55 research outputs found

    ΠšΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ стратСгии Π² соврСмСнной массовой Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅

    Get PDF
    РассматриваСтся массовая Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π° ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² соврСмСнной ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Ρ€ΠΎΠΌΠ°Π½ΠΎΠ² А. А. Π‘ΡƒΡˆΠΊΠΎΠ²Π° ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΠΊΠ°ΠΊΠΈΠ΅ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ стратСгии ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ писатСлСм с Ρ†Π΅Π»ΡŒΡŽ Π°ΠΊΡ‚ΠΈΠ²ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΎΠ³ΠΎ интСрСса

    Evaluation and Improvement of Nuclear Security Measures at a Radiological Facility in Morocco

    Get PDF
    Nuclear security combines both concepts of physical security and security culture within a nuclear facility to protect people, property, society and the environment from harmful effects of ionization radiation. Physical security means prevention, detection, and response to unauthorized removal, sabotage, and/or illegal transfer involving radioactive sources and nuclear material. Nuclear security culture is the human factor within the nuclear field which is considered a principal means to support and enhance nuclear security system. This paper presents a study of nuclear security system already established within a radiological facility considering concepts such as: deter, detect, delay, and response layers. This study focuses on nuclear security culture in order to assess, improve, and complement existing nuclear security practices

    Data Resources for Structural Bioinformatics

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Structural bioinformatics involves a variety of computational methods, all of which require input data. Typical inputs include protein structures and sequences, which are usually retrieved from a public or private database. This chapter introduces several key resources that make such data available, as well as a handful of tools that derive additional information from experimentally determined or computationally predicted protein structures and sequences

    Data Resources for Structural Bioinformatics

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Structural bioinformatics involves a variety of computational methods, all of which require input data. Typical inputs include protein structures and sequences, which are usually retrieved from a public or private database. This chapter introduces several key resources that make such data available, as well as a handful of tools that derive additional information from experimentally determined or computationally predicted protein structures and sequences.Comment: editorial responsability: Sanne Abeln, K. Anton Feenstra, Halima Mouhib. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Monte Carlo for Protein Structures

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In the previous chapter "Molecular Dynamics" we have considered protein simulations from a dynamical point of view, using Newton's laws. In the current Chapter, we first take a step back and return to the bare minimum needed to simulate proteins, and show that proteins may be simulated in a more simple fashion, using the partition function directly. This means we do not have to calculate explicit forces, velocities, moments and do not even consider time explicitly. Instead, we will rely on the fact that for most systems we will want to simulate, the system is in a dynamic equilibrium; and that we want to find the most stable states in such systems by determining the relative stabilities between those states.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Monte Carlo for Protein Structures

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In the previous chapter "Molecular Dynamics" we have considered protein simulations from a dynamical point of view, using Newton's laws. In the current Chapter, we first take a step back and return to the bare minimum needed to simulate proteins, and show that proteins may be simulated in a more simple fashion, using the partition function directly. This means we do not have to calculate explicit forces, velocities, moments and do not even consider time explicitly. Instead, we will rely on the fact that for most systems we will want to simulate, the system is in a dynamic equilibrium; and that we want to find the most stable states in such systems by determining the relative stabilities between those states

    Thermodynamics of Protein Folding

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In the previous chapter, "Introduction to Protein Folding", we introduced the concept of free energy and the protein folding landscape. Here, we provide a deeper, more formal underpinning of free energy in terms of the entropy and enthalpy; to this end, we will first need to better define the meaning of equilibrium, entropy and enthalpy. When we understand these concepts, we will come back for a more quantitative explanation of protein folding and dynamics. We will discuss the influence of temperature on the free energy landscape, and the difference between microstates and macrostates.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Thermodynamics of Protein Folding

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In the previous chapter, "Introduction to Protein Folding", we introduced the concept of free energy and the protein folding landscape. Here, we provide a deeper, more formal underpinning of free energy in terms of the entropy and enthalpy; to this end, we will first need to better define the meaning of equilibrium, entropy and enthalpy. When we understand these concepts, we will come back for a more quantitative explanation of protein folding and dynamics. We will discuss the influence of temperature on the free energy landscape, and the difference between microstates and macrostates
    • …
    corecore