27 research outputs found

    Species invasion history influences community evolution in a tri-trophic food web model. Plos One

    Get PDF
    Abstract Background: Recent experimental studies have demonstrated the importance of invasion history for evolutionary formation of community. However, only few theoretical studies on community evolution have focused on such views

    Coevolution in a One Predator–Two Prey System

    Get PDF
    Background: Our understanding of coevolution in a predator–prey system is based mostly on pair-wise interactions. Methodology and Principal Findings: Here I analyze a one-predator–two-prey system in which the predator’s attack ability and the defense abilities of the prey all evolve. The coevolutionary consequences can differ dramatically depending on the initial trait value and the timing of the alternative prey’s invasion into the original system. If the invading prey species has relatively low defense ability when it invades, its defense is likely to evolve to a lower level, stabilizing the population dynamics. In contrast, if when it invades its defense ability is close to that of the resident prey, its defense can evolve to a higher level and that of the resident prey may suddenly cease to evolve, destabilizing the population dynamics. Destabilization due to invasion is likely when the invading prey is adaptively superior (evolution of its defense is less constrained and fast), and it can also occur in a broad condition even when the invading prey is adaptively inferior. In addition, invasion into a resident system far from equilibrium characterized by population oscillations is likely to cause further destabilization

    Species Invasion History Influences Community Evolution in a Tri-Trophic Food Web Model

    Get PDF
    Background: Recent experimental studies have demonstrated the importance of invasion history for evolutionary formation of community. However, only few theoretical studies on community evolution have focused on such views. Methodology and Principal Findings: We used a tri-trophic food web model to analyze the coevolutionary effects of ecological invasions by a mutant and by a predator and/or resource species of a native consumer species community and found that ecological invasions can lead to various evolutionary histories. The invasion of a predator makes multiple evolutionary community histories possible, and the evolutionary history followed can determine both the invasion success of the predator into the native community and the fate of the community. A slight difference in the timing of an ecological invasion can lead to a greatly different fate. In addition, even greatly different community histories can converge as a result of environmental changes such as a predator trait shift or a productivity change. Furthermore, the changes to the evolutionary history may be irreversible. Conclusions and Significance: Our modeling results suggest that the timing of ecological invasion of a species into a focal community can largely change the evolutionary consequences of the community. Our approach based on adaptive dynamics will be a useful tool to understand the effect of invasion history on evolutionary formation of community

    Evolution of the maturation rate collapses competitive coexistence

    Get PDF
    Most theoretical studies on character displacement and the coexistence of competing species have focused attention on the evolution of competitive traits driven by inter-specific competition. We investigated the evolution of the maturation rate which is not directly related to competition and trades off with the birth rate and how it influences competitive outcomes. Evolution may result in the superior competitor becoming extinct if, initially, the inferior competitor has a lower, and the superior one a higher, maturation rate at the coexistence equilibrium. This counterintuitive result is explained by an explosive increase in the adult population of the inferior competitor as a result of the more rapid evolution of its maturation rate, which is caused by differences in the intensity and direction of selection on the maturation rates of the two species and in their adult densities, which are related to differences in their life histories. Thus, a life history trait trade-off with a competitive trait may cause a competitive ecological coexistence to collapse

    Natural selection contributes to food web stability.

    No full text
    How biodiversity is maintained in ecosystems is a central issue in ecology. According to the evolutionary theory, heritable variations between individuals are important for the generation of species diversity, linking both intra and interspecific variations. The present food web model shows that intraspecific variations via natural selection also play crucial roles in maintaining the stability of large communities with diverse species. In particular, our computations indicate that larger communities need more intraspecific variation to be maintained and are powerfully stabilized when multiple traits are variable. Consequently, these variations are likely to be maintained in larger communities. Hence, intra and interspecific diversities may support each other during evolution

    Rapid evolution of prey maintains predator diversity.

    No full text
    Factors maintaining the populations of diverse species that share limited resources or prey remain important issues in ecology. In the present study, I propose that heritable intraspecific variation in prey, which facilitates natural selection, is a key to solve this issue. A mathematical model reveals that diverse genotypes in a prey promote the coexistence of multiple predator species. When two predators share a prey with multiple genotypes, evolution nearly selects the two prey genotypes. Through analysis, I establish a condition of coexistence of such multiple predator-one prey interaction with two genotypes. If each prey type has high defensive capacity against different predator species, stable coexistence is likely to occur. Particularly, interspecific variations of life-history parameters allow the coexistence equilibrium to be stable. In addition, rapid evolution in a prey allows more than two predator species to coexist. Furthermore, mutation tends to stabilize otherwise unstable systems. These results suggest that intraspecific variation in a prey plays a key role in the maintenance of diverse predator species by driving adaptive evolution
    corecore