4 research outputs found

    Antifungal effects of ethanolic and aqueous extracts of Vitex agnus-castus against vaginal isolates of Candida albicans

    No full text
    Background and Purpose: Vulvovaginal candidiasis is one of the most common infections in female genital organs, which is caused by Candida species. Candida albicans is the causative agent of more than 80% of infections, and the role of non-Candida strains in the disease etiology is less prominent. The expansion of Azoles resistance among C. albicans strains is considered an important medical problem. According to previous studies, Vitex agnus-castus (vitex) has some antimicrobial effects. We aimed to evaluate the anti-fungal effects of aqueous and alcoholic extracts of vitex against clinical vaginal isolates of C. albicans in comparison with fluconazole. Materials and Methods: Gas chromatography-mass spectrometry analysis was performed on vitex to identify its possible bioactive components. Forty C. albicans clinical isolates were identified by using germ tube, chlamydospore production, culture on CHROMagar, and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Finally, after the extraction of vitex, drug susceptibility test was carried out according to the clinical laboratory standards institute (CLSI) M27-S4 document guidelines. Results: The major chemical components of vitex leaf as determined by gas chromatography included α-Pinene, isoterpinolene, caryophyllene, and azulene. The minimum inhibitory concentrations (MICs) of aqueous and alcoholic extracts of vitex, as well as fluconazole were within the ranges of 15.62–62.5, 7.81–15.62, and 0.25–8 μg/mL, respectively. Conclusion: Our findings showed that the alcoholic and aqueous extracts of vitex had antifungal activity against clinical isolates of C. albicans. Moreover, the alcoholic extract of vitex and fluconazole were more effective against clinical vaginal isolates of C. albicans compared to the aqueous extract of vitex

    CuO-NiO Nano composites: Synthesis, Characterization, and Cytotoxicity ‎evaluation ‎

    No full text
    Objective(s): In this work, CuO- NiO nano-composites were synthesized via free-surfactant co-precipitation method and then their physiochemical properties, as well as cytotoxicity and antifungal effects, were studied. Methods: The structural and optical properties of CuO-NiO nanostructures were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Atomic force microscope (AFM), UV–Vis absorption, and vibrating sample magnetometer (VSM) techniques. MTT assay was used to evaluate the cytotoxicity of nanostructures. Results: The cubical structure of CuO- NiO nano-composites was confirmed by the XRD technique. The optical study of the samples by UV-Vis indicted a blue shift in absorption wavelength with decreasing particle size due to quantum size effect. The super magnetic behavior of CuO-NiO nano composites after calcination was confirmed by magnetic characterization instrument. Finally, the results of cytotoxicity evaluation of CuO-NiO nano-composites at the lower concentrations on Breast cancer MDA cell lines demonstrate no significant toxicity. Minimum inhibitory concentration range and Minimum fungicidal concentration of nanoparticle were determined 0.97-15.62, 7.81”g/ml and for fluconazole were 1.75-25 ”g/ml and 12.58 ”g/ml, respectively. Conclusions: The study result of antimicrobialof CuO-NiO nano composites indicated an MIC90 antifungal activity with a concentration of 3.90”g/ml against vaginal isolates of C. albicans. The results of cytotoxicity study of nano-composites at concentration of 50”g/ml and 10”g/ml on the cell line of Breast cancer MDA was equivalent to %60 and %80, respectively

    Association of a Novel KIF26B Gene Polymorphism with Susceptibility to Schizophrenia and Breast Cancer: A Case-Control Study

    Get PDF
    Background: KIF26B gene is found to play essential roles in regulating different aspects of cell proliferation and development of the nervous system. We aimed to determine if rs12407427 T/C polymorphism could affect susceptibility to schizophrenia (SZN) and breast cancer (BC), the two genetically correlated diseases. Methods: The current case-control study was performed from Aug 2018 to Dec 2018. Briefly, 159 female pathologically confirmed BC cases referring to Alzahra Hospital, Isfahan, Iran, and 102 psychologically confirmed SZN patients (60 males and 42 females) admitted to Baharan Hospital, Zahedan, Iran, were enrolled. Using the salting-out method, genomic DNA was extracted, and variants were genotyped using allele-specific amplification refractory mutation system polymerase chain reaction (ARMS-PCR) method. Results: The results revealed a significant association between the KIF26B rs12407427 codominant CT (P=0.001), CC (P=0.0001), dominant CT+CC, and recessive CC (P=0.001) genotypes with the risk of developing SZN. Significant correlations were also found regarding rs12407427 and BC susceptibility in different inheritance models, including over-dominant CT (P=0.026), dominant CT+CC (P=0.001), recessive CC (P=0.009), and codominant CT and CC (P=0.001) genotypes. The over-presence of the C allele was also correlated with an increased risk for SZN (P=0.0001) and BC (P=0.0001). Finally, computational analysis predicted that T/C variation in this polymorphism could change the binding sites in proteins involved in splicing. Conclusion: rs12407427 T/C as a de novo KIF26B variant might be a novel genetic biomarker for SZN and/or BC susceptibility in a sample of the Iranian population

    Biallelic variants in ZNF142 lead to a syndromic neurodevelopmental disorder

    Get PDF
    Biallelic variants of the gene encoding for the zinc‐finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modeling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders
    corecore