3 research outputs found

    Diachronic mapping and evaluation of soil erosion rates using RUSLE in the Bouregreg River Watershed, Morocco

    No full text
    Soil erosion has been severely affecting soil and water resources in semi-arid areas like the Mediterranean. In Morocco, this natural process is accelerated by anthropogenic activities, such as unsustainable soil management, overgrazing, and deforestation. With a drainage area of 395,600 ha, the Bouregreg River Watershed extends from the Middle Atlas Range (Jebel Mtourzgane) to the Sidi Mohamed Ben Abdellah (SMBA) dam reservoir south-east of Rabat. Its contrasted eco-geomorphological landscapes make it susceptible to unprecedented soil erosion due to climate change. Resulting changes in erosive dynamics led to huge amounts of solid loads transported to the catchment outlet and, thus, jeopardised the SMBA dam lifespan due to siltation. The research aims to quantify the average annual soil losses in this watershed using the Revised Universal Equation of Soil Losses (RUSLE) within a GIS environment. To highlight shifts in land use/land cover patterns and their effects on erosional severity, we have resorted to remote sensing through two Landsat 8 satellite images captured in 2004 and 2019. The C factor was combined with readily available local data regarding major erosion factors, e.g. rainfall aggressiveness (R), soil erodibility (K), topography (LS), and conservation practices (P). The helped to map the erosion hazard and determine erosion prone areas within the watershed where appropriate water and conservation measures are to be considered. Accordingly, from 2004 to 2019, average annual soil losses increased from 11.78 to 18.38 t∙ha-1∙y-1, as the watershed area affected by strong erosion (>30 t∙ha-1∙y-1) evolved from 13.57 to 39.39%

    Assessing Regional Scale Water Balances through Remote Sensing Techniques: A Case Study of Boufakrane River Watershed, Meknes Region, Morocco

    No full text
    This paper aims to develop a method to assess regional water balances using remote sensing techniques. The Boufakrane river watershed in Meknes Region (Morocco), which is characterized by both a strong urbanization and a rural land use change, is taken as a study case. Firstly, changes in land cover were mapped by classifying remote sensing images (Thematic Mapper, Enhanced Thematic Mapper Plus and Operational Land Imager) at a medium scale resolution for the years 1990, 2003 and 2018. By means of supervised classification procedures the following land cover categories could be mapped: forests, bare soil, arboriculture, arable land and urban area. For each of these categories a water balance was developed for the different time periods, taking into account changing management and consumption patterns. Finally, the land cover maps were combined with the land cover specific water balances resulting in a total water balance for the selected catchment. The procedure was validated by comparing the assessments with data from water supply stations and the number of licensed ground water extraction pumps. In terms of land use/land cover changes (LULCC), the results showed that urban areas, natural vegetation, arboriculture and cereals increased by 183.74%, 12.55%, 34.99 and 48.77% respectively while forests and bare soils decreased by 78.65% and 16.78% respectively. On the other hand, water consumption has been increased significantly due to the Meknes city growth, the arboriculture expansion and the new crops’ introduction in the arable areas. The increased water consumption by human activities is largely due to reduced water losses through evapotranspiration because of deforestation. Since the major part of the forest in the catchment has disappeared, a further increase of the water consumption by human activities can no longer be offset by deforestation

    Assessing Regional Scale Water Balances through Remote Sensing Techniques: A Case Study of Boufakrane River Watershed, Meknes Region, Morocco

    No full text
    This paper aims to develop a method to assess regional water balances using remote sensing techniques. The Boufakrane river watershed in Meknes Region (Morocco), which is characterized by both a strong urbanization and a rural land use change, is taken as a study case. Firstly, changes in land cover were mapped by classifying remote sensing images (Thematic Mapper, Enhanced Thematic Mapper Plus and Operational Land Imager) at a medium scale resolution for the years 1990, 2003 and 2018. By means of supervised classification procedures the following land cover categories could be mapped: forests, bare soil, arboriculture, arable land and urban area. For each of these categories a water balance was developed for the different time periods, taking into account changing management and consumption patterns. Finally, the land cover maps were combined with the land cover specific water balances resulting in a total water balance for the selected catchment. The procedure was validated by comparing the assessments with data from water supply stations and the number of licensed ground water extraction pumps. In terms of land use/land cover changes (LULCC), the results showed that urban areas, natural vegetation, arboriculture and cereals increased by 183.74%, 12.55%, 34.99 and 48.77% respectively while forests and bare soils decreased by 78.65% and 16.78% respectively. On the other hand, water consumption has been increased significantly due to the Meknes city growth, the arboriculture expansion and the new crops’ introduction in the arable areas. The increased water consumption by human activities is largely due to reduced water losses through evapotranspiration because of deforestation. Since the major part of the forest in the catchment has disappeared, a further increase of the water consumption by human activities can no longer be offset by deforestation.status: publishe
    corecore