43 research outputs found
A Wideband Waveguide Antenna with Nearly Equal E- and H-Plane Radiation Patterns
A novel wideband waveguide antenna with excellent performance is proposed, which is composed of a coaxial-waveguide transition and an open-ended rectangular waveguide loaded with a pair of horizontal umbrella-shaped metallic brims. The brims perpendicular to two broad walls of the waveguide are constructed to modulate the antenna to radiate nearly identical E- and H-plane radiation patterns. A wideband impedance matching performance is achieved with a fractional bandwidth of 40% through the introduction of short-stepped ladders. The antenna has the advantages of simple structure, symmetric radiation pattern, low-cross polarization, moderate back lobe, and almost constant beamwidth
2023 Low-Power Computer Vision Challenge (LPCVC) Summary
This article describes the 2023 IEEE Low-Power Computer Vision Challenge
(LPCVC). Since 2015, LPCVC has been an international competition devoted to
tackling the challenge of computer vision (CV) on edge devices. Most CV
researchers focus on improving accuracy, at the expense of ever-growing sizes
of machine models. LPCVC balances accuracy with resource requirements. Winners
must achieve high accuracy with short execution time when their CV solutions
run on an embedded device, such as Raspberry PI or Nvidia Jetson Nano. The
vision problem for 2023 LPCVC is segmentation of images acquired by Unmanned
Aerial Vehicles (UAVs, also called drones) after disasters. The 2023 LPCVC
attracted 60 international teams that submitted 676 solutions during the
submission window of one month. This article explains the setup of the
competition and highlights the winners' methods that improve accuracy and
shorten execution time.Comment: LPCVC 2023, website: https://lpcv.ai
Selective Reduction of Post-Selection CD8 Thymocyte Proliferation in IL-15Rα Deficient Mice
Peripheral CD8+ T cells are defective in both IL-15 and IL-15Rα knock-out (KO) mice; however, whether IL-15/IL-15Rα deficiency has a similar effect on CD8 single-positive (SP) thymocytes remains unclear. In this study, we investigated whether the absence of IL-15 transpresentation in IL-15Rα KO mice results in a defect in thymic CD8 single positive (SP) TCRhi thymocytes. Comparison of CD8SP TCRhi thymocytes from IL-15Rα KO mice with their wild type (WT) counterparts by flow cytometry showed a significant reduction in the percentage of CD69− CD8SP TCRhi thymocytes, which represent thymic premigrants. In addition, analysis of in vivo 5-bromo-2-deoxyuridine (BrdU) incorporation demonstrated that premigrant expansion of CD8SP TCRhi thymocytes was reduced in IL-15Rα KO mice. The presence of IL-15 transpresentation-dependent expansion in CD8SP TCRhi thymocytes was assessed by culturing total thymocytes in IL-15Rα-Fc fusion protein-pre-bound plates that were pre-incubated with IL-15 to mimic IL-15 transpresentation in vitro. The results demonstrated that CD8SP thymocytes selectively outgrew other thymic subsets. The contribution of the newly divided CD8SP thymocytes to the peripheral CD8+ T cell pool was examined using double labeling with intrathymically injected FITC and intravenously injected BrdU. A marked decrease in FITC+ BrdU+ CD8+ T cells was observed in the IL-15Rα KO lymph nodes. Through these experiments, we identified an IL-15 transpresentation-dependent proliferation process selective for the mature CD8SP premigrant subpopulation. Importantly, this process may contribute to the maintenance of the normal peripheral CD8+ T cell pool
Analysis of early treatment of multiple injuries combined with severe pelvic fracture
Purpose: To summarize and analyze the early treatment of multiple injuries combined with severe pelvic fractures, especially focus on the hemostasis methods for severe pelvic fractures, so as to improve the successful rate of rescue for the fatal hemorrhagic shock caused by pelvic fractures. Methods: A retrospective analysis was conducted in 68 cases of multiple trauma combined with severe pelvic fractures in recent 10 years (from Jan. 2006 to Dec. 2015). There were 57 males and 11 females. Their age ranged from 19 to 75 years, averaging 42 years. Causes of injury included traffic accidents in 34 cases (2 cases of truck rolling), high falling injuries in 17 cases, crashing injuries in 15 cases, steel cable wound in 1 case, and seat belt traction injury in 1 case. There were 31 cases of head injury, 11 cases of chest injury, 56 cases of abdominal and pelvic injuries, and 37 cases of spinal and limb injuries. Therapeutic methods included early anti-shock measures, surgical hemostasis based on internal iliac artery devasculization for pelvic hemorrhage, and early treatment for combined organ damage and complications included embolization and repair of the liver, spleen and kidney, splenectomy, nephrectomy, intestinal resection, colostomy, bladder ostomy, and urethral repair, etc. Patients in this series received blood transfusion volume of 1200–10,000 mL, with an average volume of 2850 mL. Postoperative follow-up ranged from 6 months to 1.5 years. Results: The average score of ISS in this series was 38.6 points. 49 cases were successfully treated and the total survival rate was 72.1%. Totally 19 patients died (average ISS score 42.4), including 6 cases of hemorrhagic shock, 8 cases of brain injury, 1 case of cardiac injury, 2 cases of pulmonary infection, 1 case of pulmonary embolism, and 1 case of multiple organ failure. Postoperative complications included 1 case of urethral stricture (after secondary repair), 1 case of sexual dysfunction (combined with urethral rupture), 1 case of lower limb amputation (femoral artery thrombosis), and 18 cases of consumptive coagulopathy. Conclusion: The early treatment of multiple injuries combined with severe pelvic fractures should focus on pelvic hemostasis. Massive bleeding-induced hemorrhagic shock is one of the main causes of poor prognosis. The technique of internal iliac artery devasculization including ligation and embolization can be used as an effective measure to stop or reduce bleeding. Consumptive coagulopathy is difficult to deal with, which should be detected and treated as soon as possible after surgical measures have been performed. The effect of using recombinant factor VII in treating consumptive coagulopathy is satisfactory. Keywords: Multiple trauma, Pelvic fractures, Internal iliac artery, Consumptive coagulopathy, Hemostasi
Recommended from our members
Remote ischemic preconditioning differentially attenuates post-ischemic cardiac arrhythmia in streptozotocin-induced diabetic versus nondiabetic rats.
BackgroundSudden cardiac death (SCD), a leading cause of global mortality, most commonly arises from a substrate of cardiac ischemia, but requires an additional trigger. Diabetes mellitus (DM) predisposes to SCD even after adjusting for other DM-linked cardiovascular pathology such as coronary artery disease. We previously showed that remote liver ischemia preconditioning (RLIPC) is highly protective against cardiac ischemia reperfusion injury (IRI) linked ventricular arrhythmias and myocardial infarction, via induction of the cardioprotective RISK pathway, and specifically, inhibitory phosphorylation of GSK-3β (Ser 9).MethodsWe evaluated the impact of acute streptozotocin-induced DM on coronary artery ligation IRI-linked ventricular arrhythmogenesis and RLIPC therapy in rats.ResultsPost-IRI arrhythmia induction was similar in nondiabetic and DM rats, but, unexpectedly, DM rats exhibited lower incidence of SCD during reperfusion (41 vs. 100%), suggesting uncontrolled hyperglycemia does not acutely predispose to SCD. RLIPC was highly effective in both nondiabetic and DM rats at reducing incidence and duration of, and increasing latency to, all classes of ventricular tachyarrhythmias. In contrast, atrioventricular block (AVB) was highly responsive to RLIPC in nondiabetic rats (incidence reduced from 72 to 18%) but unresponsive in DM rats. RISK pathway induction was similar in nondiabetic and DM rats, thus not explaining the DM-specific resistance of AVB to therapy.ConclusionsOur findings uncover important acute DM-specific differences in responsiveness to remote preconditioning for ventricular tachyarrhythmias versus AVB, which may have clinical significance given that AVB is a malignant arrhythmia twofold more common in human diabetics than nondiabetics, and correlated to plasma glucose levels >10 mmol/L
Remote ischemic preconditioning differentially attenuates post-ischemic cardiac arrhythmia in streptozotocin-induced diabetic versus nondiabetic rats
Abstract Background Sudden cardiac death (SCD), a leading cause of global mortality, most commonly arises from a substrate of cardiac ischemia, but requires an additional trigger. Diabetes mellitus (DM) predisposes to SCD even after adjusting for other DM-linked cardiovascular pathology such as coronary artery disease. We previously showed that remote liver ischemia preconditioning (RLIPC) is highly protective against cardiac ischemia reperfusion injury (IRI) linked ventricular arrhythmias and myocardial infarction, via induction of the cardioprotective RISK pathway, and specifically, inhibitory phosphorylation of GSK-3β (Ser 9). Methods We evaluated the impact of acute streptozotocin-induced DM on coronary artery ligation IRI-linked ventricular arrhythmogenesis and RLIPC therapy in rats. Results Post-IRI arrhythmia induction was similar in nondiabetic and DM rats, but, unexpectedly, DM rats exhibited lower incidence of SCD during reperfusion (41 vs. 100%), suggesting uncontrolled hyperglycemia does not acutely predispose to SCD. RLIPC was highly effective in both nondiabetic and DM rats at reducing incidence and duration of, and increasing latency to, all classes of ventricular tachyarrhythmias. In contrast, atrioventricular block (AVB) was highly responsive to RLIPC in nondiabetic rats (incidence reduced from 72 to 18%) but unresponsive in DM rats. RISK pathway induction was similar in nondiabetic and DM rats, thus not explaining the DM-specific resistance of AVB to therapy. Conclusions Our findings uncover important acute DM-specific differences in responsiveness to remote preconditioning for ventricular tachyarrhythmias versus AVB, which may have clinical significance given that AVB is a malignant arrhythmia twofold more common in human diabetics than nondiabetics, and correlated to plasma glucose levels >10 mmol/L
Remote Liver Ischemic Preconditioning Protects against Sudden Cardiac Death via an ERK/GSK-3β-Dependent Mechanism.
BackgroundPreconditioning stimuli conducted in remote organs can protect the heart against subsequent ischemic injury, but effects on arrhythmogenesis and sudden cardiac death (SCD) are unclear. Here, we investigated the effect of remote liver ischemia preconditioning (RLIPC) on ischemia/reperfusion (I/R)-induced cardiac arrhythmia and sudden cardiac death (SCD) in vivo, and determined the potential role of ERK/GSK-3βsignaling.Methods/resultsMale Sprague Dawley rats were randomized to sham-operated, control, or RLIPC groups. RLIPC was induced by alternating four 5-minute cycles of liver ischemia with 5-minute intermittent reperfusions. To investigate I/R-induced arrhythmogenesis, hearts in each group were subsequently subjected to 5-minute left main coronary artery ligation followed by 20-minute reperfusion. RLIPC reduced post-I/R ventricular arrhythmias, and decreased the incidence of SCD >threefold. RLIPC increased phosphorylation of cardiac ERK1/2, and GSK-3β Ser9 but not Tyr216 post-I/R injury. Inhibition of either GSK-3β (with SB216763) or ERK1/2 (with U0126) abolished RLIPC-induced antiarrhythmic activity and GSK-3β Ser9 and ERK1/2 phosphorylation, leaving GSK-3β Tyr216 phosphorylation unchanged.ConclusionsRLIPC exerts a powerful antiarrhythmic effect and reduces predisposition to post-IR SCD. The underlying mechanism of RLIPC cardioprotection against I/R-induced early arrhythmogenesis may involve ERK1/2/GSK-3β Ser9-dependent pathways
Remote Liver Ischemic Preconditioning Protects against Sudden Cardiac Death via an ERK/GSK-3β-Dependent Mechanism.
Preconditioning stimuli conducted in remote organs can protect the heart against subsequent ischemic injury, but effects on arrhythmogenesis and sudden cardiac death (SCD) are unclear. Here, we investigated the effect of remote liver ischemia preconditioning (RLIPC) on ischemia/reperfusion (I/R)-induced cardiac arrhythmia and sudden cardiac death (SCD) in vivo, and determined the potential role of ERK/GSK-3βsignaling.Male Sprague Dawley rats were randomized to sham-operated, control, or RLIPC groups. RLIPC was induced by alternating four 5-minute cycles of liver ischemia with 5-minute intermittent reperfusions. To investigate I/R-induced arrhythmogenesis, hearts in each group were subsequently subjected to 5-minute left main coronary artery ligation followed by 20-minute reperfusion. RLIPC reduced post-I/R ventricular arrhythmias, and decreased the incidence of SCD >threefold. RLIPC increased phosphorylation of cardiac ERK1/2, and GSK-3β Ser9 but not Tyr216 post-I/R injury. Inhibition of either GSK-3β (with SB216763) or ERK1/2 (with U0126) abolished RLIPC-induced antiarrhythmic activity and GSK-3β Ser9 and ERK1/2 phosphorylation, leaving GSK-3β Tyr216 phosphorylation unchanged.RLIPC exerts a powerful antiarrhythmic effect and reduces predisposition to post-IR SCD. The underlying mechanism of RLIPC cardioprotection against I/R-induced early arrhythmogenesis may involve ERK1/2/GSK-3β Ser9-dependent pathways
Recommended from our members
Remote Liver Ischemic Preconditioning Protects against Sudden Cardiac Death via an ERK/GSK-3β-Dependent Mechanism.
BackgroundPreconditioning stimuli conducted in remote organs can protect the heart against subsequent ischemic injury, but effects on arrhythmogenesis and sudden cardiac death (SCD) are unclear. Here, we investigated the effect of remote liver ischemia preconditioning (RLIPC) on ischemia/reperfusion (I/R)-induced cardiac arrhythmia and sudden cardiac death (SCD) in vivo, and determined the potential role of ERK/GSK-3βsignaling.Methods/resultsMale Sprague Dawley rats were randomized to sham-operated, control, or RLIPC groups. RLIPC was induced by alternating four 5-minute cycles of liver ischemia with 5-minute intermittent reperfusions. To investigate I/R-induced arrhythmogenesis, hearts in each group were subsequently subjected to 5-minute left main coronary artery ligation followed by 20-minute reperfusion. RLIPC reduced post-I/R ventricular arrhythmias, and decreased the incidence of SCD >threefold. RLIPC increased phosphorylation of cardiac ERK1/2, and GSK-3β Ser9 but not Tyr216 post-I/R injury. Inhibition of either GSK-3β (with SB216763) or ERK1/2 (with U0126) abolished RLIPC-induced antiarrhythmic activity and GSK-3β Ser9 and ERK1/2 phosphorylation, leaving GSK-3β Tyr216 phosphorylation unchanged.ConclusionsRLIPC exerts a powerful antiarrhythmic effect and reduces predisposition to post-IR SCD. The underlying mechanism of RLIPC cardioprotection against I/R-induced early arrhythmogenesis may involve ERK1/2/GSK-3β Ser9-dependent pathways