24 research outputs found

    The Bending Feature of the Fermi Bubbles: A Presumed Horizontal Galactic Wind and Its Implication on the Bubbles' Age

    Full text link
    There are two spectacular structures in our Milky Way: the {\it Fermi} bubbles in gamma-ray observations and the North Polar Spur (NPS) structure in X-ray observations. Because of their morphological similarities, they may share the same origin, i.e., related to the past activity of Galactic center (GC). Besides, those structures show significant bending feature toward the west in Galactic coordinates. This inspires us to consider the possibility that the bending may be caused by a presumed global horizontal galactic wind (HGW) blowing from the east to the west. Under this assumption, we adopt a toy shock expansion model to understand two observational features: (1) the relative thickness of the NPS; (2) the bending of the {\it Fermi} bubbles and NPS. In this model, the contact discontinuity (CD) marks the boundary of the {\it Fermi} bubbles, and the shocked interstellar medium (ISM) marks the NPS X-ray structure. We find that the Mach number of the forward shock in the east is ∼\sim 1.9-2.3, and the velocity of the HGW is ~ 0.7-0.9 csc_{s}. Depending on the temperature of the pre-shock ISM, the velocity of the expanding NPS in Galactic coordinates is around 180-290 km/s, and the HGW is ~ 110-190 km/s. We argue that, the age of the NPS and the {\it Fermi} bubbles is about 18-34 Myr. This is a novel method, independent of injection theories and radiative mechanisms, for the estimation on the age of the {\it Fermi} bubble/NPS.Comment: 6 pages, 4 figure, accepted by ApJ

    The Accretion Wind Model of the Fermi Bubbles (II): Radiation

    Full text link
    In a previous work, we have shown that the formation of the Fermi bubbles can be due to the interaction between winds launched from the hot accretion flow in Sgr A* and the interstellar medium (ISM). In that work, we focus only on the morphology. In this paper we continue our study by calculating the gamma-ray radiation. Some cosmic ray protons (CRp) and electrons must be contained in the winds, which are likely formed by physical processes such as magnetic reconnection. We have performed MHD simulations to study the spatial distribution of CRp, considering the advection and diffusion of CRp in the presence of magnetic field. We find that a permeated zone is formed just outside of the contact discontinuity between winds and ISM, where the collisions between CRp and thermal nuclei mainly occur. The decay of neutral pions generated in the collisions, combined with the inverse Compton scattering of background soft photons by the secondary leptons generated in the collisions and primary CR electrons can well explain the observed gamma-ray spectral energy distribution. Other features such as the uniform surface brightness along the latitude and the boundary width of the bubbles are also explained. The advantage of this accretion wind model is that the adopted wind properties come from the detailed small scale MHD numerical simulation of accretion flows and the value of mass accretion rate has independent observational evidences. The success of the model suggests that we may seriously consider the possibility that cavities and bubbles observed in other contexts such as galaxy clusters may be formed by winds rather than jets.Comment: 13 pages,6 figures, accepted for publication in Ap

    On the Efficiency of Thermal Conduction in Galaxy Clusters

    Full text link
    Galaxy clusters host a large reservoir of diffuse plasma with radially-varying temperature profiles. The efficiency of thermal conduction in the intracluster medium (ICM) is complicated by the existence of turbulence and magnetic fields, and has received a lot of attention in the literature. Previous studies suggest that the magnetothermal instability developed in outer regions of galaxy clusters would drive magnetic field lines preferentially radial, resulting in efficient conduction along the radial direction. Using a series of spherically-symmetric simulations, here we investigate the impact of thermal conduction on the observed temperature distributions in outer regions of three massive clusters, and find that thermal conduction substantially modifies the ICM temperature profile. Within 3 Gyr, the gas temperature at a representative radius of 0.3r5000.3r_{500} typically decreases by ~10 - 20% and the average temperature slope between 0.3r5000.3r_{500} and r500r_{500} drops by ~ 30 - 40%, indicating that the observed ICM would not stay in a long-term equilibrium state in the presence of thermal conduction. However, X-ray observations show that the outer regions of massive clusters have remarkably similar radially-declining temperature profiles, suggesting that they should be quite stable. Our study thus suggests that the effective conductivity along the radial direction must be suppressed below the Spitzer value by a factor of 10 or more, unless additional heating sources offset conductive cooling and maintain the observed temperature distributions. Our study provides a smoking-gun evidence for the suppression of parallel conduction along magnetic field lines in low-collisionality plasmas by kinetic mirror or whistler instabilities.Comment: Slightly revised version, accepted for publication in ApJ. 11 pages, 7 figure

    Fermi Bubbles Inflated by Winds Launched from the Hot Accretion Flow in Sgr A*

    Get PDF
    A pair of giant gamma-ray bubbles have been revealed by the {\it Fermi} LAT. In this paper we investigate their formation mechanism. Observations have indicated that the activity of the supermassive black hole located at the Galactic center, Sgr A*, was much stronger than the present time. Specifically, one possibility is that while Sgr A* was also in the hot accretion regime, the accretion rate should be 103−10410^3-10^4 times higher during the past ∼107\sim 10^7 yr. On the other hand, recent MHD numerical simulations of hot accretion flows have unambiguously shown the existence of strong winds and obtained their properties. Based on these knowledge, by performing three-dimensional hydrodynamical simulations, we show in this paper that the Fermi bubbles could be inflated by winds launched from the ``past' hot accretion flow in Sgr A*. In our model, the active phase of Sgr A* is required to last for about 10 million years and it was quenched no more than 0.2 million years ago. The Central Molecular Zone (CMZ) is included and it collimates the wind orientation towards the Galactic poles. Viscosity suppresses the Rayleigh-Taylor and Kelvin-Helmholtz instabilities and results in the smoothness of the bubble edge. The main observational features of the bubbles can be well explained. Specifically, the {\it ROSAT} X-ray features are interpreted by the shocked interstellar medium and the interaction region between winds and CMZ gas. The thermal pressure and temperature obtained in our model are in good consistency with the recent {\it Suzaku} observations.Comment: 12 pages,8 figures, Accepted by Ap

    An Asymmetrical Model for High Energy Radiation of Cassiopeia A

    Full text link
    Cassiopeia A (Cas A) supernova remnant shows strong radiation from radio to gamma-ray bands. The mechanism of gamma-ray radiation in Cas A and its possible contribution to PeV cosmic rays are still under debate. The X-ray imaging reveals an asymmetric profile of Cas A, suggesting the existence of a jet-like structure. In this work, we propose an asymmetrical model for Cas A, consisting of a fast moving jet-like structure and a slowly expanding isotropic shell. This model can account for the multi-wavelength spectra of Cas A, especially for the power-law hard X-ray spectrum from ∼\sim 60 to 220 keV. The GeV to TeV emission from Cas A should be contributed by both hadronic and leptonic processes. Moreover, the jet-like structure may produce a gamma-ray flux of ∼10−13erg cm−2 s−1\sim 10^{-13}\rm erg\ cm^{-2}\ s^{-1} at ∼100\sim 100 TeV, to be examined by LHAASO and CTA.Comment: 7 pages, 7 figures. MNRAS in pres

    The peculiar filamentary HI structure of NGC 6145

    Full text link
    In this paper, we report the peculiar HI morphology of the cluster spiral galaxy NGC 6145, which has a 150 kpc HI filament on one side that is nearly parallel to its major axis. This filament is made up of several HI clouds and the diffuse HI gas between them, with no optical counterparts. We compare its HI distribution with other one-sided HI distributions in the literature, and find that the overall HI distribution is very different from the typical tidal and ram-pressure stripped HI shape, and its morphology is inconsistent with being a pure accretion event. Only about 30% of the total HI gas is anchored on the stellar disk, while most of HI gas forms the filament in the west. At a projected distance of 122 kpc, we find a massive elliptical companion (NGC 6146) with extended radio emission, whose axis points to an HI gap in NGC 6145. The velocity of the HI filament shows an overall light-of- sight motion of 80 to 180 km/s with respect to NGC 6145. Using the long-slit spectra of NGC 6145 along its major stellar axis, we find that some outer regions show enhanced star formation, while in contrast, almost no star formation activities are found in its center (less than 2 kpc). Pure accretion, tidal or ram-pressure stripping is not likely to produce the observed HI filament. An alternative explanation is the jet-stripping from NGC 6146, although direct evidence for a jet-cold gas interaction has not been found.Comment: 12 pages, 6 figures; Accepted for publication in A

    Radio emission of tidal disruption events from wind-cloud interaction

    Full text link
    Winds can be launched in tidal disruption event (TDE). It has been proposed that the winds can interact with the cloud surrounding the black hole, produce bow shocks, accelerate electrons, and produce radio emission. We restudy the wind-cloud interaction model. We employ the properties of winds found by the radiation hydrodynamic simulations of super-Eddington circularized accretion flow in TDEs. We can calculate the peak radio emission frequency, the luminosity at the peak frequency, and their time-evolution based on the TDEs wind-cloud interaction model. We find that the model predicted peak radio emission frequency, the luminosity at peak frequency, and their time evolution can be well consistent with those in TDEs AT2019dsg and ASASSN-14li. This indicates that in these two radio TDEs, the wind-cloud interaction mechanism may be responsible for the radio emission.Comment: 11 pages, 10 figures, accepted to MNRA
    corecore