61 research outputs found

    Counteracting systems of diabaticities using DRAG controls: The status after 10 years

    Full text link
    The task of controlling a quantum system under time and bandwidth limitations is made difficult by unwanted excitations of spectrally neighboring energy levels. In this article we review the Derivative Removal by Adiabatic Gate (DRAG) framework. DRAG is a multi-transition variant of counterdiabatic driving, where multiple low-lying gapped states in an adiabatic evolution can be avoided simultaneously, greatly reducing operation times compared to the adiabatic limit. In its essence, the method corresponds to a convergent version of the superadiabatic expansion where multiple counterdiabaticity conditions can be met simultaneously. When transitions are strongly crowded, the system of equations can instead be favorably solved by an average Hamiltonian (Magnus) expansion, suggesting the use of additional sideband control. We give some examples of common systems where DRAG and variants thereof can be applied to improve performance.Comment: 7 pages, 2 figure

    Implementing optimal control pulse shaping for improved single-qubit gates

    Full text link
    We employ pulse shaping to abate single-qubit gate errors arising from the weak anharmonicity of transmon superconducting qubits. By applying shaped pulses to both quadratures of rotation, a phase error induced by the presence of higher levels is corrected. Using a derivative of the control on the quadrature channel, we are able to remove the effect of the anharmonic levels for multiple qubits coupled to a microwave resonator. Randomized benchmarking is used to quantify the average error per gate, achieving a minimum of 0.007+/-0.005 using 4 ns-wide pulse.Comment: 4 pages, 4 figure

    Deterministic generation of remote entanglement with active quantum feedback

    Get PDF
    We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone
    • …
    corecore