102 research outputs found

    The Role of Oxygen at the Second Discharge Plateau of Nickel Hydroxide

    Get PDF
    It was shown that the appearance of a secondary discharge plateau approximately 400 mV below the primary plateau can result from the reduction of oxygen. During the galvanostatic discharge of planar nickel-hydroxide films at room temperature and in 3 weight percent KOH solutions, the second discharge plateau was observed only in the presence of dissolved oxygen in the electrolyte. When the solution was deoxygenated, no residual capacity could be extracted from the films even at low discharge rates or from overcharged films. In addition, the duration of the second plateau is inversely proportional to the square of the discharge current, which is indicative of a diffusion-controlled process. The nickel hydroxide active material, rather than the electrolyte, seems to be the primary reservoir for the oxygen that is reduced on the second plateau

    The Effect of Temperature and Ethanol on the Deposition of Nickel Hydroxide Films

    Get PDF
    The objective of this work was to determine the effect of the temperature and the ethanol content of the Ni(NO3)2 solution on: (i) the efficiency of electrochemical deposition of nickel hydroxide; and (ii) the molecular weight of the deposited film. An electrochemical quartz crystal nanobalance (EQCN) was used to measure the mass of films electrochemically deposited from Ni(NO3)2 solutions and constant current discharges were used to determine the electrochemical capacity of the films. The data indicates that increasing the temperature increases both the efficiency of the deposition reaction and the molecular weight of the deposited film. The increased efficiency at higher temperatures is attributed to a decrease in the concentration of a nickel complex at the surface of the electrode. The lower complex concentration decreases the diffusion rate of this species away from the electrode surface and hence increases the rate at which the complex precipitates from the solution. The increase in the molecular weight at higher temperature is attributed to a combination of increased rate of deposition and an increase in the lattice spacing of the active material. The data also indicate that increasing the ethanol content of the solution had no noticeable effect on the efficiency of deposition, when water was present. In pure ethanol, however, the chemistry of deposition seemed to change considerably. However, increasing the ethanol content of the solution resulted in an increase of the molecular weight of the film. Increase in the molecular weight with an increase in the ethanol content of the solution is due to an increase in the relative percentage of ethanol incorporated in the active material. The data also indicate that the number of electrons in the discharge reaction is approximately 1.4 electrons per nickel atom

    Proton Diffusion in Nickel Hydroxide: Prediction of Active Material Utilization

    Get PDF
    Galvanostatic charge and discharge experiments reveal that the active material in nickel electrodes cannot be fully accessed at high currents or for thick films. It has been proposed that the utilization of the active material is controlled by the diffusion rate of protons through the film. This hypothesis is supported by the good agreement between mathematical simulations of material utilization and experimental data over a range of charge and discharge currents and film thicknesses. Furthermore, the fraction of material utilized is larger on charge than on discharge. The asymmetry on charge and discharge is due to a diffusion coefficient that is a function of the state-of-charge of the active material. The mathematical model is used to perform a parametric study of material utilization as a function of charge and discharge currents, and material loading (i.e., film thickness, concentration of nickel sites) in order to improve battery design and operation
    • …
    corecore