136 research outputs found

    Plasticiser leaching from polyvinyl chloride microplastics and the implications for environmental risk assessment

    Get PDF
    Microplastics in aquatic environments is a growing concern, particularly due to the leaching of chemical additives such as plasticisers. To develop comprehensive environmental risk assessments (ERAs) of high-concern polymers and plasticisers, an understanding of their leachability is required. This work investigated diethylhexyl phthalate (DEHP) and bisphenol A (BPA) leaching from polyvinyl chloride (PVC) microplastics (average diameter = 191 μm) under simulated marine conditions. Leaching behaviours were quantified using gel permeation chromatography (GPC) and thermal gravimetric analysis (TGA), and the polymer's physiochemical properties analysed using differential scanning calorimetry (DSC), Fourier Transform-Infrared Spectroscopy (FT-IR) and optical microscopy. Experimental data were fitted to a diffusion and boundary layer model, which found that BPA leaching was temperature-dependent (diffusion-limited), whereas DEHP leaching was controlled by surface rinsing. Model predictions also highlighted the importance of microplastic size on leaching dynamics. These data contribute towards greater accuracy in ERAs of microplastics, with implications for water quality and waste management, including decommissioning of plastic infrastructure

    Taking control of microplastics data: A comparison of control and blank data correction methods

    Get PDF
    Although significant headway has been achieved regarding method harmonisation for the analysis of microplastics, analysis and interpretation of control data has largely been overlooked. There is currently no consensus on the best method to utilise data generated from controls, and consequently many methods are arbitrarily employed. This study identified 6 commonly implemented strategies: a) No correction; b) Subtraction; c) Mean Subtraction; d) Spectral Similarity; e) Limits of detection/ limits of quantification (LOD/LOQ) or f) Statistical analysis, of which many variations are possible. Here, the 6 core methods and 45 variant methods (n = 51) thereof were used to correct a dummy dataset using control data. Most of the methods tested were too inflexible to account for the inherent variation present in microplastic data. Only 7 of the 51 methods tested (six LOD/LOQ methods and one statistical method) showed promise, removing between 96.3 % and 100 % of the contamination data from the dummy set. The remaining 44 methods resulted in deficient corrections for background contamination due to the heterogeneity of microplastics. These methods should be avoided in the future to avoid skewed results, especially in low abundance samples. Overall, LOD/LOQ methods or statistical analysis comparing means are recommended for future use in microplastic studies

    Ingestion and depuration of microplastics by a planktivorous coral reef fish, Pomacentrus amboinensis

    Get PDF
    Microplastics are ubiquitous contaminants in marine environments and organisms. Concerns about potential impacts on marine organisms are usually associated with uptake of microplastics, especially via ingestion. This study used environmentally relevant exposure conditions to investigate microplastic ingestion and depuration kinetics of the planktivorous damselfish, Pomacentrus amboinensis. Irregular shaped blue polypropylene (PP) particles (longest length 125–250 μm), and regular shaped blue polyester (PET) fibers (length 600–700 μm) were selected based on physical and chemical characteristics of microplastics commonly reported in the marine environment, including in coral reef ecosystems. Individual adult damselfish were exposed to a single dose of PP particles and PET fibers at concentrations reported for waters of the Great Barrier Reef (i.e., environmentally relevant concentrations, ERC), or future projected higher concentrations (10x ERC, 100x ERC). Measured microplastic concentrations were similar to their nominal values, confirming that PP particles and PET fibers were present at the desired concentrations and available for ingestion by individual damselfish. Throughout the 128-h depuration period, the 88 experimental fish were sampled 2, 4, 8, 16, 32, 64, and 128-h post microplastic exposure and their gastrointestinal tracts (GIT) analyzed for ingested microplastics. While damselfish ingested both experimental microplastics at all concentrations, body burden, and depuration rates of PET fibers were significantly larger and longer, respectively, compared to PP particles. For both microplastic types, exposure to higher concentrations led to an increase in body burden and lower depuration rates. These findings confirm ingestion of PP particles and PET fibers by P. amboinensis and demonstrate for the first time the influence of microplastic characteristics and concentrations on body burden and depuration rates. Finally, despite measures put in place to prevent contamination, extraneous microplastics were recovered from experimental fish, highlighting the challenge to completely eliminate contamination in microplastic exposure studies. These results are critical to inform and continuously improve protocols for future microplastics research, and to elucidate patterns of microplastic contamination and associated risks in marine organisms

    Oil spill source identification using colorimetric detection

    Get PDF
    The colorimetric detection of polycyclic aromatic hydrocarbons (PAHs) was investigated for the quick and easy identification of likely oil spill offenders. In this new technology, photochromic compounds were used to sense PAHs by varying their photoswitching capacity. To that end, three photochromes were designed and showed varying degrees of photoswitching inhibition depending on PAH analyte, photochrome and excitation wavelength. PAH mixtures that mimic oil spills showed the same varying response and demonstrated the accuracy of this technology. To prove the applicability of this technology, an array was assembled using the three photochromes at three excitation wavelengths and tested against authentic crude oil samples. Not only could these samples be differentiated, weathering of two distinctly different oil samples showed limited variation in response, demonstrating that this may be a viable technique for in situ oil identification

    Ingestion of microplastic debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: validation of a sequential extraction protocol

    Get PDF
    Ocean contamination by plastics is a global issue. Although ingestion of plastic debris by sea turtles has been widely documented, contamination by microplastics ( 100 μm. Two macroplastics and seven microplastics (two plastic paint chips and five synthetic fabric particles) were isolated from subsamples of two green turtles. Our results highlight the need for more research towards understanding the impact of microplastics on these threatened marine reptiles

    TiO2 photocatalysis of naproxen : effect of the water matrix, anions and diclofenac on degradation rates

    Get PDF
    The TiO2 photocatalytic degradation of the active pharmaceutical ingredient (API) naproxen (NPX) has been studied using a laboratory-scale photoreactor equipped with a medium pressure mercury lamp. UV/TiO2 photocatalysis proved highly efficient in the elimination of NPX from a variety of water matrices, including distilled water, unfiltered river water and drinking water, although the rate of reaction was not always proportional to TiO2 concentration. However, the NPX degradation rate, which follows first-order kinetics, was appreciably reduced in river water spiked with phosphate and chloride ions, a dual anion system. Addition of chloride into drinking water enhanced the TiO2-photocatalysed degradation rate. Competitive degradation studies also revealed that the NPX degradation was greatly reduced in the presence of increased concentrations of another API, diclofenac (DCF). This was established by (i) the extent of mineralization, as determined by dissolved organic carbon (DOC) content, and (ii) the formation of intermediate NPX by-products, identified using liquid chromatography and electrospray ionization (positive and negative mode) mass spectrometry techniques. This study demonstrates that competition for active sites (anions or DCF) and formation of multiple photoproducts resulting from synergistic interactions (between both APIs) are key to the TiO2-photocatalysed NPX degradation

    New nickel(II) and iron(II) helicates and tetrahedra derived from expanded quaterpyridines

    Get PDF
    As an extension of prior studies involving the linear quaterpyridine ligand, 5,5'''-dimethyl-2,2':5',5'':2'',2'''-quaterpyridine 1, the synthesis of the related expanded quaterpyridine derivatives 2 and 3 incorporating dimethoxy-substituted 1,4-phenylene and tetramethoxy-substituted 4,4'-biphenylene bridges between pairs of 2,2'-bipyridyl groups has been carried out via double-Suzuki coupling reactions between 5-bromo-5'-methyl-2'-bipyridine and the appropriate di-pinacol-diboronic esters using microwave heating. Reaction of 2 and 3 with selected Fe(II) or Ni(II) salts yields a mixture of both [M2L3]4+ triple helicates and [M4L6]8+ tetrahedra, in particular cases the ratio of the products formed was shown to be dependent on the reaction conditions; the respective products are all sufficiently inert to allow their chromatographic separation and isolation. Longer reaction times and higher concentrations were found to favour tetrahedron formation. The X-ray structures of solvated [Ni2(2)3](PF6)4, [(PF6) ⊂ Fe4(2)6](PF6)7, [Fe4(3)6](PF6)8 and [Ni4(3)6](PF6)8 have been determined, while the structure of the parent Fe(II) cage in the series, [(PF6) ⊂ Fe4(1)6](PF6)7, was reported previously. The internal volumes of the Fe(II) tetrahedral cages have been calculated and increase from 102 Å3 for [Fe4(1)6]8+ to 227 Å3 for [Fe4(2)6]8+ to 417 Å3 for [Fe4(3)6]8+ and to an impressive 839 Å3 for [Ni4(3)6]8+. The corresponding void volume in the triple helicate [Ni2(2)3]4+ is 29 Å3

    Evaluating the Effect of Chemical Digestion Treatments on Polystyrene Microplastics: Recommended Updates to Chemical Digestion Protocols

    Get PDF
    Establishing the toxicity and exposure consequences of microplastics (MPs) on marine organisms relies on the nondestructive isolation of plastics from biological matrices. MPs are commonly extracted from these matrices by chemical digestion using alkali (e.g., potassium hydroxide (KOH) and sodium hydroxide (NaOH)), oxidative (e.g., hydrogen peroxide (H2O2)) and/or acidic (e.g., nitric acid (HNO3)) reagents. Although these digestion conditions can be highly effective for MP extraction, they can also react with the plastics. This can attribute an inaccurate representation of plastic contamination by altering MP visual characteristics (size, shape, color), thereby impeding identification and potentially returning erroneous numbers of ingested particles. In this study, the degradative impacts are assessed of the routinely applied digestion reagents (i) KOH, (ii) NaOH, (iii) H2O2, and (iv)HNO3 on polystyrene (PS) based MPs sized between 200 μm and 5 mm. Degradation of the PS MPs is evaluated using FT-IR, gel permeation chromatography, NMR, photoluminescence spectroscopy, and microscopy. These studies reveal HNO3 to be the most destructive for PS MPs, while the alkali and oxidative reagents result in negligible changes in plastic properties. These results are recommended to be used as a guideline to update current protocols to ensure the nondestructive treatment of MPs
    • …
    corecore