563 research outputs found

    Synchronization is optimal in non-diagonalizable networks

    Full text link
    We consider the problem of maximizing the synchronizability of oscillator networks by assigning weights and directions to the links of a given interaction topology. We first extend the well-known master stability formalism to the case of non-diagonalizable networks. We then show that, unless some oscillator is connected to all the others, networks of maximum synchronizability are necessarily non-diagonalizable and can always be obtained by imposing unidirectional information flow with normalized input strengths. The extension makes the formalism applicable to all possible network structures, while the maximization results provide insights into hierarchical structures observed in complex networks in which synchronization plays a significant role.Comment: 4 pages, 1 figure; minor revisio

    (Non)Invariance of dynamical quantities for orbit equivalent flows

    Full text link
    We study how dynamical quantities such as Lyapunov exponents, metric entropy, topological pressure, recurrence rates, and dimension-like characteristics change under a time reparameterization of a dynamical system. These quantities are shown to either remain invariant, transform according to a multiplicative factor or transform through a convoluted dependence that may take the form of an integral over the initial local values. We discuss the significance of these results for the apparent non-invariance of chaos in general relativity and explore applications to the synchronization of equilibrium states and the elimination of expansions

    Dynamical and spectral properties of complex networks

    Full text link
    Dynamical properties of complex networks are related to the spectral properties of the Laplacian matrix that describes the pattern of connectivity of the network. In particular we compute the synchronization time for different types of networks and different dynamics. We show that the main dependence of the synchronization time is on the smallest nonzero eigenvalue of the Laplacian matrix, in contrast to other proposals in terms of the spectrum of the adjacency matrix. Then, this topological property becomes the most relevant for the dynamics.Comment: 14 pages, 5 figures, to be published in New Journal of Physic

    How big is too big? Critical Shocks for Systemic Failure Cascades

    Full text link
    External or internal shocks may lead to the collapse of a system consisting of many agents. If the shock hits only one agent initially and causes it to fail, this can induce a cascade of failures among neighoring agents. Several critical constellations determine whether this cascade remains finite or reaches the size of the system, i.e. leads to systemic risk. We investigate the critical parameters for such cascades in a simple model, where agents are characterized by an individual threshold \theta_i determining their capacity to handle a load \alpha\theta_i with 1-\alpha being their safety margin. If agents fail, they redistribute their load equally to K neighboring agents in a regular network. For three different threshold distributions P(\theta), we derive analytical results for the size of the cascade, X(t), which is regarded as a measure of systemic risk, and the time when it stops. We focus on two different regimes, (i) EEE, an external extreme event where the size of the shock is of the order of the total capacity of the network, and (ii) RIE, a random internal event where the size of the shock is of the order of the capacity of an agent. We find that even for large extreme events that exceed the capacity of the network finite cascades are still possible, if a power-law threshold distribution is assumed. On the other hand, even small random fluctuations may lead to full cascades if critical conditions are met. Most importantly, we demonstrate that the size of the "big" shock is not the problem, as the systemic risk only varies slightly for changes of 10 to 50 percent of the external shock. Systemic risk depends much more on ingredients such as the network topology, the safety margin and the threshold distribution, which gives hints on how to reduce systemic risk.Comment: 23 pages, 7 Figure

    Can aerosols be trapped in open flows?

    Get PDF
    The fate of aerosols in open flows is relevant in a variety of physical contexts. Previous results are consistent with the assumption that such finite-size particles always escape in open chaotic advection. Here we show that a different behavior is possible. We analyze the dynamics of aerosols both in the absence and presence of gravitational effects, and both when the dynamics of the fluid particles is hyperbolic and nonhyperbolic. Permanent trapping of aerosols much heavier than the advecting fluid is shown to occur in all these cases. This phenomenon is determined by the occurrence of multiple vortices in the flow and is predicted to happen for realistic particle-fluid density ratios.Comment: Animation available at http://www.pks.mpg.de/~rdvilela/leapfrogging.htm

    Network Automata: Coupling structure and function in real-world networks

    Full text link
    We introduce Network Automata, a framework which couples the topological evolution of a network to its structure. It is useful for dealing with networks in which the topology evolves according to some specified microscopic rules and, simultaneously, there is a dynamic process taking place on the network that both depends on its structure but is also capable of modifying it. It is a generic framework for modeling systems in which network structure, dynamics, and function are interrelated. At the practical level, this framework allows for easy implementation of the microscopic rules involved in such systems. To demonstrate the approach, we develop a class of simple biologically inspired models of fungal growth.Comment: 7 pages, 5 figures, 1 tables. Revised content - surplus text and figures remove

    Enhancing complex-network synchronization

    Full text link
    Heterogeneity in the degree (connectivity) distribution has been shown to suppress synchronization in networks of symmetrically coupled oscillators with uniform coupling strength (unweighted coupling). Here we uncover a condition for enhanced synchronization in directed networks with weighted coupling. We show that, in the optimum regime, synchronizability is solely determined by the average degree and does not depend on the system size and the details of the degree distribution. In scale-free networks, where the average degree may increase with heterogeneity, synchronizability is drastically enhanced and may become positively correlated with heterogeneity, while the overall cost involved in the network coupling is significantly reduced as compared to the case of unweighted coupling.Comment: 4 pages, 3 figure

    Network Synchronization, Diffusion, and the Paradox of Heterogeneity

    Full text link
    Many complex networks display strong heterogeneity in the degree (connectivity) distribution. Heterogeneity in the degree distribution often reduces the average distance between nodes but, paradoxically, may suppress synchronization in networks of oscillators coupled symmetrically with uniform coupling strength. Here we offer a solution to this apparent paradox. Our analysis is partially based on the identification of a diffusive process underlying the communication between oscillators and reveals a striking relation between this process and the condition for the linear stability of the synchronized states. We show that, for a given degree distribution, the maximum synchronizability is achieved when the network of couplings is weighted and directed, and the overall cost involved in the couplings is minimum. This enhanced synchronizability is solely determined by the mean degree and does not depend on the degree distribution and system size. Numerical verification of the main results is provided for representative classes of small-world and scale-free networks.Comment: Synchronization in Weighted Network

    Critical Switching in Globally Attractive Chimeras

    Full text link
    We report on a new type of chimera state that attracts almost all initial conditions and exhibits power-law switching behavior in networks of coupled oscillators. Such switching chimeras consist of two symmetric configurations, which we refer to as subchimeras, in which one cluster is synchronized and the other is incoherent. Despite each subchimera being linearly stable, switching chimeras are extremely sensitive to noise: arbitrarily small noise triggers and sustains persistent switching between the two symmetric subchimeras. The average switching frequency scales as a power law with the noise intensity, which is in contrast with the exponential scaling observed in typical stochastic transitions. Rigorous numerical analysis reveals that the power-law switching behavior originates from intermingled basins of attraction associated with the two subchimeras, which in turn are induced by chaos and symmetry in the system. The theoretical results are supported by experiments on coupled optoelectronic oscillators, which demonstrate the generality and robustness of switching chimeras
    corecore