3 research outputs found

    Effects of submerged vegetation on water clarity across climates

    Get PDF
    A positive feedback between submerged vegetation and water clarity forms the backbone of the alternative state theory in shallow lakes. The water clearing effect of aquatic vegetation may be caused by different physical, chemical, and biological mechanisms and has been studied mainly in temperate lakes. Recent work suggests differences in biotic interactions between (sub)tropical and cooler lakes might result in a less pronounced clearing effect in the (sub)tropics. To assess whether the effect of submerged vegetation changes with climate, we sampled 83 lakes over a gradient ranging from the tundra to the tropics in South America. Judged from a comparison of water clarity inside and outside vegetation beds, the vegetation appeared to have a similar positive effect on the water clarity across all climatic regions studied. However, the local clearing effect of vegetation decreased steeply with the contribution of humic substances to the underwater light attenuation. Looking at turbidity on a whole-lake scale, results were more difficult to interpret. Although lakes with abundant vegetation (>30%) were generally clear, sparsely vegetated lakes differed widely in clarity. Overall, the effect of vegetation on water clarity in our lakes appears to be smaller than that found in various Northern hemisphere studies. This might be explained by differences in fish communities and their relation to vegetation. For instance, unlike in Northern hemisphere studies, we find no clear relation between vegetation coverage and fish abundance or their diet preference. High densities of omnivorous fish and coinciding low grazing pressures on phytoplankton in the (sub)tropics may, furthermore, weaken the effect of vegetation on water clarity

    Climate-dependent CO2 emissions from lakes

    Get PDF
    Inland waters, just as the world's oceans, play an important role in the global carbon cycle. While lakes and reservoirs typically emit CO2, they also bury carbon in their sediment. The net CO2 emission is largely the result of the decomposition or preservation of terrestrially supplied carbon. What regulates the balance between CO2 emission and carbon burial is not known, but climate change and temperature have been hypothesized to influence both processes. We analyzed patterns in carbon dioxide partial pressure (pCO2) in 83 shallow lakes over a large climatic gradient in South America and found a strong, positive correlation with temperature. The higher pCO2 in warmer lakes may be caused by a higher, temperature-dependent mineralization of organic carbon. This pattern suggests that cool lakes may start to emit more CO2 when they warm up because of climate ch

    Modelling spatial heterogeneity of phytoplankton in Lake Mangueira, a large shallow subtropical lake in South Brazil

    No full text
    We present a model describing phytoplankton growth in Lake Mangueira, a large subtropical lake in the Taim Hydrological System in South Brazil (817 km2, average depth 2 m). The horizontal 2D model consists of three modules: (a) a detailed hydrodynamic module for shallow water, which deals with wind-driven quantitative flows and water level, (b) a nutrient module, which deals with nutrient transport mechanisms and some conversion processes and (c) a biological module, which describes phytoplankton growth in a simple way. We solved the partial differential equations numerically by applying an efficient semi-implicit finite differences method to a regular grid. Hydrodynamic parameters were calibrated to continuous measurements of the water level at two different locations of the lake. An independent validation data set showed a good fit of the hydrodynamic module (R2 Âż 0.92). The nutrient and biological modules were parameterized using literature data and verified by comparing simulated phytoplankton patterns with remote sensing data from satellite images and field data of chlorophyll a. Moreover, a sensitivity analyses showed which parameters had the largest influence on the simulated phytoplankton biomass. The model could identify zones with a higher potential for eutrophication. It has shown to be a first step towards a management tool for prediction of the trophic state in subtropical lakes, estuaries and reservoirs
    corecore