16 research outputs found

    Loss-of-function variants in CUL3 cause a syndromic neurodevelopmental disorder

    Full text link
    Purpose De novovariants inCUL3(Cullin-3 ubiquitin ligase) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here we aimed to collect sporadic cases carrying rare variants inCUL3,describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism.MethodsGenetic data and detailed clinical records were collected via multi-center collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells.ResultsWe assembled a cohort of 35 individuals with heterozygousCUL3variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 33 have loss-of-function (LoF) and two have missense variants.CUL3LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugatesin vitro. Specifically, we show that cyclin E1 (CCNE1) and 4E-BP1 (EIF4EBP1), two prominent substrates of CUL3, fail to be targeted for proteasomal degradation in patient-derived cells.ConclusionOur study further refines the clinical and mutational spectrum ofCUL3-associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism

    Efficient one-step chromatographic purification and functional characterization of recombinant human Saposin C

    No full text
    Saposin (Sap) C is a small lysosomal disulfide bridge-containing glycoprotein required for glucosylceramide (GC) hydrolysis by glucosylceramidase (GCase). Sap C deficiency causes a variant form of Gaucher disease (GD), a rare genetic disorder characterized by GC accumulation in lysosomes of monocyte/macrophage lineage. Efforts to develop fast and efficient methodologies to express and purify Sap C have been made in the last years. Here, human Sap C was expressed in a bacterial strain that greatly enhances disulfide bond formation, and the recombinant protein was purified in a single chromatographic step using an affinity tag-based protein purification system. Mass spectrometry analysis demonstrated that disulfide bridges required for Sap C stability and functionality were retained. Consistently, the recombinant protein was shown to interact with anionic phospholipids-containing vesicles, and reconstitute GCase activity in vitro. Recombinant Sap C was efficiently endocytosed by Sap C-deficient fibroblasts, and targeted to lysosomes. These findings document that the bacterially purified Sap C exerts biological properties functionally equivalent to those observed for the native protein, indicating its potential use in the development of therapeutic intervention. (C) 2011 Elsevier Inc. All rights reserved

    Saposin C mutations in Gaucher disease patients resulting in lysosomal lipid accumulation, saposin C deficiency, but normal prosaposin processing and sorting

    No full text
    Gaucher disease (GD) is characterized by accumulation of glucosylceramide (GC) in the cells of monocyte/ macrophage system. The degradation of GC is controlled by glucosylceramidase (GCase) and saposin (Sap) C, a member of a family of four small glycoproteins (Saps A, B, C and D), all derived by proteolytic processing of a common precursor, prosaposin (PSAP). Saps contain six cysteine residues, forming three disulfide bridges, that affect their structure and function. Sap C is an essential activator of GCase and its deficit impairs the GCase activity causing GD. In the present study the biological properties of cells from four recently described GD patients carrying mutations in the Sap C domain of the PSAP gene have been characterized. Two patients had mutations involving a cysteine residue, whereas the other two had a L349P mutation. It was found that: (i) in the four Sap C-deficient cells PSAP was normally processed and sorted, the lack of Sap C being mainly due to the Sap C instability in late endosomal/lysosomal environment; (ii) the decrease/absence of Sap C affected the GCase intracellular localization; (iii) the lowest level of Sap C and enhanced autophagy were observed in the cells, which carried a Sap C mutation involving a cysteine residue; (iv) the four Sap C-deficient fibroblasts stored GC, ceramide and cholesterol, the last two lipids being clearly localized in lysosomes; (v) a correlation was observed between the type of Sap C mutation and the Gaucher phenotype: apparently, mutations involving cysteine residues lead to a neurological variant of G

    Enhanced MAPK1 Function Causes a Neurodevelopmental Disorder within the RASopathy Clinical Spectrum

    No full text
    Signal transduction through the RAF-MEK-ERK pathway, the first described mitogen-associated protein kinase (MAPK) cascade, mediates multiple cellular processes and participates in early and late developmental programs. Aberrant signaling through this cascade contributes to oncogenesis and underlies the RASopathies, a family of cancer-prone disorders. Here, we report that de novo missense variants in MAPK1, encoding the mitogen-activated protein kinase 1 (i.e., extracellular signal-regulated protein kinase 2, ERK2), cause a neurodevelopmental disease within the RASopathy phenotypic spectrum, reminiscent of Noonan syndrome in some subjects. Pathogenic variants promote increased phosphorylation of the kinase, which enhances translocation to the nucleus and boosts MAPK signaling in vitro and in vivo. Two variant classes are identified, one of which directly disrupts binding to MKP3, a dual-specificity protein phosphatase negatively regulating ERK function. Importantly, signal dysregulation driven by pathogenic MAPK1 variants is stimulus reliant and retains dependence on MEK activity. Our data support a model in which the identified pathogenic variants operate with counteracting effects on MAPK1 function by differentially impacting the ability of the kinase to interact with regulators and substrates, which likely explains the minor role of these variants as driver events contributing to oncogenesis. After nearly 20 years from the discovery of the first gene implicated in Noonan syndrome, PTPN11, the last tier of the MAPK cascade joins the group of genes mutated in RASopathies.Sin financiaciĂłn11.025 JCR (2020) Q1, 11/176 Genetics & Heredity6.661 SJR (2020) Q1, 11/340 GeneticsNo data IDR 2020UE

    Clinical and functional characterization of a novel RASopathy-causing SHOC2 mutation associated with prenatal-onset hypertrophic cardiomyopathy

    No full text
    SHOC2 is a scaffold protein mediating RAS-promoted activation of mitogen-activated protein kinase (MAPK) signaling in response to extracellular stimuli. A recurrent activating mutation in SHOC2 (p.Ser2Gly) causes Mazzanti syndrome, a RASopathy characterized by features resembling Noonan syndrome and distinctive ectodermal abnormalities. A second mutation (p.Met173Ile) supposed to cause loss-of-function was more recently identified in two individuals with milder phenotypes. Here, we report on the third RASopathy-causing SHOC2 mutation (c.807_808delinsTT, p.Gln269_His270delinsHisTyr), which was found associated with prenatal-onset hypertrophic cardiomyopathy. Structural analyses indicated a possible impact of the mutation on the relative orientation of the two SHOC2's leucine-rich repeat domains. Functional studies provided evidence of its activating role, revealing enhanced binding of the mutant protein to MRAS and PPP1CB, and increased signaling through the MAPK cascade. Differing from SHOC2 S2G , SHOC2 Q269_H270delinsHY is not constitutively targeted to the plasma membrane. These data document that diverse mechanisms in SHOC2 functional dysregulation converge toward MAPK signaling upregulation

    Expanding the molecular spectrum of pathogenic SHOC2 variants underlying Mazzanti syndrome

    No full text
    We previously molecularly and clinically characterized Mazzanti syndrome, a RASopathy related to Noonan syndrome that is mostly caused by a single recurrent missense variant (c.4A > G, p.Ser2Gly) in SHOC2, which encodes a leucine-rich repeat (LRR)-containing protein facilitating signal flow through the RAS-mitogen-associated protein kinase (MAPK) pathway. We also documented that the pathogenic p.Ser2Gly substitution causes upregulation of MAPK signaling and constitutive targeting of SHOC2 to the plasma membrane due to the introduction of an N-myristoylation recognition motif. The almost invariant occurrence of the pathogenic c.4A > G missense change in SHOC2 is mirrored by a relatively homogeneous clinical phenotype of Mazzanti syndrome. Here we provide new data on the clinical spectrum and molecular diversity of this disorder, and functionally characterize new pathogenic variants. The clinical phenotype of six unrelated individuals carrying novel disease-causing SHOC2 variants is delineated, and public and newly collected clinical data are utilized to profile the disorder. In silico, in vitro and in vivo characterization of the newly identified variants provides evidence that the consequences of these missense changes on SHOC2 functional behavior differ from what had been observed for the canonical p.Ser2Gly change but converge towards an enhanced activation of the RAS-MAPK pathway. Our findings expand the molecular spectrum of pathogenic SHOC2 variants, provide a more accurate picture of the phenotypic expression associated with variants in this gene, and definitively establish a GoF behavior as the mechanism of disease.s
    corecore