7,090 research outputs found

    Continuous Transition between Antiferromagnetic Insulator and Paramagnetic Metal in the Pyrochlore Iridate Eu2Ir2O7

    Full text link
    Our single crystal study of the magneto-thermal and transport properties of the pyrochlore iridate Eu2Ir2O7 reveals a continuous phase transition from a paramagnetic metal to an antiferromagnetic insulator for a sample with stoichiometry within ~1% resolution. The insulating phase has strong proximity to an antiferromagnetic semimetal, which is stabilized by several % level of the off-stoichiometry. Our observations suggest that in addition to electronic correlation and spin-orbit coupling the magnetic order is essential for opening the charge gap.Comment: 6 pages, 6 figure

    Pioneer Iowa in Beadle Fiction

    Get PDF

    Low-energy excitations of the one-dimensional half-filled SU(4) Hubbard model with an attractive on-site interaction: Density-matrix renormalization-group calculations and perturbation theory

    Full text link
    We investigate low-energy excitations of the one-dimensional half-filled SU(4) Hubbard model with an attractive on-site interaction U < 0 using the density matrix renormalization group method as well as a perturbation theory. We find that the ground state is a charge density wave state with a long range order. The ground state is completely incompressible since all the excitations are gapful. The charge gap which is the same as the four-particle excitation gap is a non-monotonic function of U, while the spin gap and others increase with increasing |U| and have linear asymptotic behaviors.Comment: 4 pages, 3 figures, submitte

    Comment on: Weak Anisotropy and Disorder Dependence of the In-Plane Magnetoresistance in High-Mobility (100) Si Inversion Layers

    Full text link
    Comment on: Weak Anisotropy and Disorder Dependence of the In-Plane Magnetoresistance in High-Mobility (100) Si Inversion LayersComment: 1 page, submitted to PR

    Electron localization near Mott transition in organic superconductor κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2]_{2}]Br

    Full text link
    The effect of disorder on the electronic properties near the Mott transition is studied in an organic superconductor κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br, which is systematically irradiated by X-ray. We observe that X-ray irradiation causes Anderson-type electron localization due to molecular disorder. The resistivity at low temperatures demonstrates variable range hopping conduction with Coulomb interaction. The experimental results show clearly that the electron localization by disorder is enhanced by the Coulomb interaction near the Mott transition.Comment: 5 pages, 4 figure

    Micrometeorological processes driving snow ablation in an Alpine catchment

    Get PDF
    Mountain snow covers typically become patchy over the course of a melting season. The snow pattern during melt is mainly governed by the end of winter snow depth distribution and the local energy balance. The objective of this study is to investigate micrometeorological processes driving snow ablation in an Alpine catchment. For this purpose we combine a meteorological model (ARPS) with a fully distributed energy balance model (Alpine3D). Turbulent fluxes above melting snow are further investigated by using data from eddy-correlation systems. We compare modelled snow ablation to measured ablation rates as obtained from a series of Terrestrial Laser Scanning campaigns covering a complete ablation season. The measured ablation rates indicate that the advection of sensible heat causes locally increased ablation rates at the upwind edges of the snow patches. The effect, however, appears to be active over rather short distances except for very strong wind conditions. Neglecting this effect, the model is able to capture the mean ablation rates for early ablation periods but strongly overestimates snow ablation once the fraction of snow coverage is below a critical value. While radiation dominates snow ablation early in the season, the turbulent flux contribution becomes important late in the season. Simulation results indicate that the air temperatures appear to overestimate the local air temperature above snow patches once the snow coverage is below a critical value. Measured turbulent fluxes support these findings by suggesting a stable internal boundary layer close to the snow surface causing a strong decrease of the sensible heat flux towards the snow cover. Thus, the existence of a stable internal boundary layer above a patchy snow cover exerts a dominant control on the timing and magnitude of snow ablation for patchy snow covers.<br/

    Quantum-defect theory of resonant charge exchange

    Full text link
    We apply the quantum-defect theory for 1/R4-1/R^4 potential to study the resonant charge exchange process. We show that by taking advantage of the partial-wave-insensitive nature of the formulation, resonant charge exchange of the type of 1^1S+2^2S can be accurately described over a wide range of energies using only three parameters, such as the \textit{gerade} and the \textit{ungerade} ss wave scattering lengths, and the atomic polarizability, even at energies where many partial waves contribute to the cross sections. The parameters can be determined experimentally, without having to rely on accurate potential energy surfaces, of which few exist for ion-atom systems. The theory further relates ultracold interactions to interactions at much higher temperatures.Comment: 8 pages, 7 figure

    Fermi-Hubbard physics with atoms in an optical lattice

    Full text link
    The Fermi-Hubbard model is a key concept in condensed matter physics and provides crucial insights into electronic and magnetic properties of materials. Yet, the intricate nature of Fermi systems poses a barrier to answer important questions concerning d-wave superconductivity and quantum magnetism. Recently, it has become possible to experimentally realize the Fermi-Hubbard model using a fermionic quantum gas loaded into an optical lattice. In this atomic approach to the Fermi-Hubbard model the Hamiltonian is a direct result of the optical lattice potential created by interfering laser fields and short-ranged ultracold collisions. It provides a route to simulate the physics of the Hamiltonian and to address open questions and novel challenges of the underlying many-body system. This review gives an overview of the current efforts in understanding and realizing experiments with fermionic atoms in optical lattices and discusses key experiments in the metallic, band-insulating, superfluid and Mott-insulating regimes.Comment: Posted with permission from the Annual Review of of Condensed Matter Physics Volume 1 \c{opyright} 2010 by Annual Reviews, http://www.annualreviews.or

    Ac conductivity and dielectric properties of CuFe1−xCrxO2 : Mg delafossite

    Get PDF
    The electrical and dielectric properties of CuFe(1−x)Cr(x)O(2) (0 ≤ x ≤ 1) powders, doped with 3% of Mg and prepared by solid-state reaction, were studied by broadband dielectric spectroscopy in the temperature range from −100 to 150 °C. The frequency-dependent electrical and dielectric data have been discussed in the framework of a power law conductivity and complex impedance and dielectric modulus. At room temperature, the ac conductivity behaviour is characteristic of the charge transport in CuFe1−xCrxO2 powders. The substitution of Fe3+ by Cr3+ results in an increase in dc conductivity and a decrease in the Cu+–Cu+ distance. Dc conductivity, characteristic onset frequency and Havriliak–Negami characteristics relaxation times are thermally activated above −40 °C for x = 0.835. The associated activation energies obtained from dc and ac conductivity and from impedance and modulus losses are similar and show that CuFe1−xCrxO2 delafossite powders satisfy the BNN relation. Dc and ac conductivities have the same transport mechanism, namely thermally activated nearest neighbour hopping and tunnelling hopping above and below −40 °C, respectively

    Effect of inversion asymmetry on the intrinsic anomalous Hall effect in ferromagnetic (Ga,Mn)As

    Full text link
    The relativistic nature of the electron motion underlies the intrinsic part of the anomalous Hall effect, believed to dominate in ferromagnetic (Ga,Mn)As. In this paper, we concentrate on the crystal band structure as an important facet to the description of this phenomenon. Using different k.p and tight-binding computational schemes, we capture the strong effect of the bulk inversion asymmetry on the Berry curvature and the anomalous Hall conductivity. At the same time, we find it not to affect other important characteristics of (Ga,Mn)As, namely the Curie temperature and uniaxial anisotropy fields. Our results extend the established theories of the anomalous Hall effect in ferromagnetic semiconductors and shed new light on its puzzling nature
    corecore