6,717 research outputs found

    Probability distributions associated with finite markov chains

    Get PDF

    Wave functions in the neighborhood of a toroidal surface; hard vs. soft constraint

    Full text link
    The curvature potential arising from confining a particle initially in three-dimensional space onto a curved surface is normally derived in the hard constraint q→0q \to 0 limit, with qq the degree of freedom normal to the surface. In this work the hard constraint is relaxed, and eigenvalues and wave functions are numerically determined for a particle confined to a thin layer in the neighborhood of a toroidal surface. The hard constraint and finite layer (or soft constraint) quantities are comparable, but both differ markedly from those of the corresponding two dimensional system, indicating that the curvature potential continues to influence the dynamics when the particle is confined to a finite layer. This effect is potentially of consequence to the modelling of curved nanostructures.Comment: 4 pages, no fig

    Towards first-principles understanding of the metal-insulator transition in fluid alkali metals

    Full text link
    By treating the electron-ion interaction as perturbation in the first-principles Hamiltonian, we have calculated the density response functions of a fluid alkali metal to find an interesting charge instability due to anomalous electronic density fluctuations occurring at some finite wave vector {\bi Q} in a dilute fluid phase above the liquid-gas critical point. Since |{\bi Q}| is smaller than the diameter of the Fermi surface, this instability necessarily impedes the electric conduction, implying its close relevance to the metal-insulator transition in fluid alkali metals.Comment: 11 pages, 5 figure

    Doping Dependence of Polaron Hopping Energies in La(1-x)Ca(x)MnO(3) (0<= x<= 0.15)

    Full text link
    Measurements of the low-frequency (f<= 100 kHz) permittivity at T<= 160 K and dc resistivity (T<= 430 K) are reported for La(1-x)Ca(x)MnO(3) (0<= x<= 0.15). Static dielectric constants are determined from the low-T limiting behavior of the permittivity. The estimated polarizability for bound holes ~ 10^{-22} cm^{-3} implies a radius comparable to the interatomic spacing, consistent with the small polaron picture established from prior transport studies near room temperature and above on nearby compositions. Relaxation peaks in the dielectric loss associated with charge-carrier hopping yield activation energies in good agreement with low-T hopping energies determined from variable-range hopping fits of the dc resistivity. The doping dependence of these energies suggests that the orthorhombic, canted antiferromagnetic ground state tends toward an insulator-metal transition that is not realized due to the formation of the ferromagnetic insulating state near Mn(4+) concentration ~ 0.13.Comment: PRB in press, 5 pages, 6 figure

    Ferromagnetic imprinting of spin polarization in a semiconductor

    Full text link
    We present a theory of the imprinting of the electron spin coherence and population in an n-doped semiconductor which forms a junction with a ferromagnet. The reflection of non-equilibrium semiconductor electrons at the interface provides a mechanism to manipulate the spin polarization vector. In the case of unpolarized excitation, this ballistic effect produces spontaneous electron spin coherence and nuclear polarization in the semiconductor, as recently observed by time-resolved Faraday rotation experiments. We investigate the dependence of the spin reflection on the Schottky barrier height and the doping concentration in the semiconductor and suggest control mechanisms for possible device applications.Comment: 4 pages with 2 figure

    Kruppel-Like Factor 2 in Cholangiocarcinoma

    Get PDF

    External Control of a Metal-Insulator Transition in GaMnAs Wires

    Full text link
    Quantum transport in disordered ferromagnetic (III,Mn)V semiconductors is studied theoretically. Mesoscopic wires exhibit an Anderson disorder-induced metal-insulator transition that can be controlled by a weak external magnetic field. This metal-insulator transition should also occur in other materials with large anisotropic magneto resistance effects. The transition can be useful for studies of zero-temperature quantum critical phase transitions and fundamental material properties.Comment: Major revised final versio

    A new vibrational level of the H2+_2^+ molecular ion

    Get PDF
    A new state of the H2+_2^+ molecular ion with binding energy of 1.09×10−9\times10^{-9} a.u. below the first dissociation limit is predicted, using highly accurate numerical nonrelativistic quantum calculations. It is the first L=0 excited state, antisymmetric with respect to the exchange of the two protons. It manifests itself as a huge p-H scattering length of a=750±5a=750\pm 5 Bohr radii.Comment: 6 pages + 3 figure

    Nonlinear Ionic Conductivity of Thin Solid Electrolyte Samples: Comparison between Theory and Experiment

    Full text link
    Nonlinear conductivity effects are studied experimentally and theoretically for thin samples of disordered ionic conductors. Following previous work in this field the {\it experimental nonlinear conductivity} of sodium ion conducting glasses is analyzed in terms of apparent hopping distances. Values up to 43 \AA are obtained. Due to higher-order harmonic current density detection, any undesired effects arising from Joule heating can be excluded. Additionally, the influence of temperature and sample thickness on the nonlinearity is explored. From the {\it theoretical side} the nonlinear conductivity in a disordered hopping model is analyzed numerically. For the 1D case the nonlinearity can be even handled analytically. Surprisingly, for this model the apparent hopping distance scales with the system size. This result shows that in general the nonlinear conductivity cannot be interpreted in terms of apparent hopping distances. Possible extensions of the model are discussed.Comment: 7 pages, 6 figure

    Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves

    Get PDF
    We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second and third harmonic voltage response non locally, the model is experimentally examined. The results indicate that the combination of Peltier and Seebeck effects contributes significantly to the nonlocal baseline resistance. Moreover, we found that the second and third harmonic response signals can be attributed to Joule heating and temperature dependencies of both Seebeck coefficient and resistivity.Comment: 4 pages, 4 figure
    • …
    corecore