7 research outputs found

    Response of Bacillus cereus on Zea mays under different doses of zinc sulphate

    Get PDF
    Anthropogenic activities have added a large amount of heavy metals to the environment. Heavy metal contaminants affect the physiological and biological properties of soil and plant health. Zinc (Zn) is an essential micronutrient and it promotes plant growth and development but a higher concentration of the metal causes reduction in plant growth. The present study was aimed to evaluate the response of Bacillus cereus on maize plants at different concentrations of ZnSO4 (20, 40 and 60 mg kg-1) amended in the soil under pot experiment conditions. The experiment was conducted by using complete randomized design (CRD) with three replications. Higher doses of ZnSO4 inhibited maize growth and nutrient uptake. However, inoculation of maize seeds with Bacillus cereus at 20 mg kg-1 concentration of ZnSO4 increased seed germination about 39% and plant height by 15%. Moreover, 17% increase in leaf length and a 7% increase in leaf number were observed as compared to control at 20 mg kg-1 concentrations of ZnSO4. Reductions in all growth parameters were observed with 60 mg kg-1 concentration of ZnSO4. The Zn uptake was 75% higher in treatment T8 (uninoculated seeds with 60 mg kg-1 concentration of ZnSO4) as compared to treatments which were inoculated and grown under different zinc concentrations. The results suggest that Bacillus cereus has good potential to remediate Zn from soil as well as to reduce the phyto-availibility and phytotoxicity of zinc

    Formulation of single super phosphate fertilizer from rock phosphate of Hazara, Pakistan

    No full text
    Phosphorus deficiency is wide spread in soils of Pakistan. It is imperative to explore the potential and economics of indigenous Hazara rock phosphate for preparation of single super phosphate fertilizer. For the subject study rock phosphate was collected from Hazara area ground at 160 mesh level with 26% total P2O5 content for manual preparation of single super phosphate fertilizer. The rock phosphate was treated with various concentrations of sulfuric acid (98.9%, diluted or pure) in the field. The treatments comprised of 20 and 35% pure acid and diluted with acid-water ratios of 1:5, 1:2, 1:1 and 2:1 v/v for acidulation at the rate of 60 liters 100 kg-1 rock phosphate. The amount was prior calculated in the laboratory for complete wetting of rock phosphate. A quantity of 150 kg rock phosphate was taken as treatment. The respective amount of acid was applied with the spray pump of stainless steel or poured with bucket. After proper processing, chemical analysis of the products showed a range of available P2O5 content from 9.56 to 19.24% depending upon the amount of acid and its dilution. The results reveal at that 1:1 dilutions gave the highest P2O5 content (19.24%), lowest free acid (6 %) and 32% weight increase. The application of acid beyond or below this combination either pure or diluted gave hygroscopic product and higher free acids. The cost incurred upon the manual processing was almost half the prevailing rates in the market. These results lead to conclude that application of sulfuric acid at the rate of 60 liters 100 kg-1 with the dilution of 50% (v/v) can yield better kind of SSP from Hazara rock phosphate at lower prices

    Combined effect of endophytic Bacillus mycoides and rock phosphate on the amelioration of heavy metal stress in wheat plants

    No full text
    Abstract Background Zinc (Zn) and nickel (Ni) are nutrients that are crucial for plant growth; however, when they are present at higher concentrations, they can cause toxicity in plants. The present study aimed to isolate plant growth promoting endophytic bacteria from Viburnum grandiflorum and assess its plant and defense promoting potential alone and in combination with RP in zinc (Zn) and nickel (Ni) toxic soil. The isolated endophytic bacteria were identified using 16s rRNA gene sequencing. For the experiment, twelve different treatments were applied using Zn, Ni, isolated endophytic Bacillus mycoides (Accession # MW979613), and rock phosphate (RP). The Ni, Zn and RP were used at the rate of (100 mg/kg) and (0.2 g/kg) respectively. A pot experiment with three replicates of each treatment was conducted using a complete randomized design (CRD). Results The results indicated that Ni (T5 = seed + 100 mg/kg Ni and T9 = seed + 100 mg/kg Zn) and Zn concentrations inhibited plant growth, but the intensity of growth inhibition was higher in Ni-contaminated soil. Bacillus mycoides and RP at 100 mg/Kg Zn (T12 = inoculated seed + 100 mg/kg Zn + RP0.2 g/kg.) increased the shoot length, leaf width, protein and sugar content by 57%, 13%, 20% and 34%, respectively, compared to the control. The antioxidant enzymes superoxide dismutases (SOD), peroxidase (POD) were decreased in contaminated soil. Furthermore, Ni and Zn accumulation was inhibited in T11 (seed + 100 mg/kg Zn + RP0.2 g/Kg) and T12 (inoculated seed + 100 mg/kg Zn + RP0.2 g/Kg) by 62 and 63% respectively. The Cu, Ca, and K, contents increased by 128, 219 and 85, Mn, Na, and K by 326, 449, and 84% in (T3 = inoculated seed) and (T4 = inoculated seed + RP 0.2 g/Kg) respectively. Conclusions Ni was more toxic to plants than Zn, but endophytic bacteria isolated from Viburnum grandiflorum, helped wheat (Triticum aestivum) plants and reduced the toxic effects of Ni and Zn. The effect of Bacillus mycoides was more prominent in combination with RP which promoted and suppressed heavy-metal toxicity. The reported combination of Bacillus mycoides and RP may be useful for improving plant growth and overcoming metal stress

    Isolation and Characterization of Phosphate Solubilizing Microbes from Rock Phosphate Mines and Their Potential Effect for Sustainable Agriculture

    No full text
    Continuous application of phosphate (P) mineral to soil renders apatite addition during each crop growing season which is of great concern from a sustainable agriculture viewpoint. Use of efficient phosphate solubilizing microbes (PSB) is one of the most effective ways to solubilize this apatite mineral in the soil. The current study targeted hydroxyapatite mines to explore, isolate and characterize efficient P solubilizers to solubilize apatite in the soil. Efficiency of isolated microbes to solubilize rock phosphate (hydroxyapatite) and tri-calcium phosphate (TCP) as well as indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate deaminase (ACC) activity were tested. Identification and phylogenetic analysis of bacterial and fungal isolates were carried out by 16S rRNA and internal transcribed spacer (ITS) rDNA sequence analyses, respectively. The isolated bacterial strains were identified as Staphylococcus sp., Bacillus firmus, Bacillus safensis, and Bacillus licheniformis whereas fungal isolates were identified as Penicillium sp. and Penicillium oxalicum. Results showed that the impact of identified strains in combination with three phosphate fertilizers sources (compost, rock phosphate and diammonium phosphate (DAP)) was conspicuous on maize crop grown in pot. Both bacterial and fungal strains increased the P uptake by plants as well as recorded with higher available P in post-harvested soil. Penicillium sp. in combination with compost resulted in maximum P-uptake by plants and post-harvest soil P contents, compared to other combinations of P sources and bio-inoculants. Screening and application of efficient P solubilizers can be a better option to utilize the indigenous phosphate reserves of soil as well as organic amendments for sustainable agriculture

    Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils

    No full text
    Sulfur deficiency arising due to intensive cultivation, use of sulfur free fertilizers and reduction in atmospheric sulfur depositions has become a major issue limiting crop production in many parts of the world. Elemental sulfur could be a good source of available S, but its slow oxidation is a problem for its efficient use as a sulfur fertilizer. Main objective of the study was to assess the effect of organic amendments (OA) and elemental sulfur (ES) on microbial activities, sulfur oxidation and availability in soil. A laboratory incubation experiment was carried out for a 56 days period using two sulfur deficient alkaline soils. Organic amendments (OA), i.e., farmyard manure (FYM), poultry litter (PL) and sugarcane filter cake (SF), were applied (1% w/w) with or without elemental sulfur (ES) at 50 mg kg−1. Application of ES alone or in combination with OA significantly increasedCO2-C evolution, microbial biomass, and enzyme activities in the soils, except dehydrogenase activity (DHA) which was not affected by ES application. Combined application of OA and ES had a more pronounced effect on microbial parameters compared to ES or OA applied alone. Ratios of dehydrogenase activity-to-microbial biomass C and arylsulfatase activity-to-microbial biomass C were high in ES+FYM and ES+SF treatments, respectively. Elemental sulfur got sufficiently oxidized resulting in significant improvement in plant available S. Relatively more ES was distributed into C-bonded-S than ester bonded-S. Increase in sulfur availability in ES+OA amended soils was the combined function of sulfur oxidation and mineralization processes through improved microbial activity

    Immobilization of Cd, Pb and Zn through Organic Amendments in Wastewater Irrigated Soils

    No full text
    Due to the scarcity of water, raw sewage effluents are often used to irrigate arable suburban soils in developing countries, which causes soil contamination with toxic metals. Soil microorganisms involved in biochemical transformations are sensitive to heavy metals contamination. The study was designed to investigate the effect of organic amendments on the microbial activity of cadmium (Cd), lead (Pb) and zinc (Zn) fractions and their bioavailability in soils contaminated with wastewater irrigation. Three metal contaminated soils under wastewater irrigation were collected, ground, sieved and added to incubation jars. Two organic amendments: wheat straw and chickpea straw, were applied (1% w/w) to the soil before incubation for 84 days at 25 °C. The CO2-C evolution after 1, 2, 3, 5, 7, 10 and 14 days was measured and thereafter was also measured weekly. Soil samples collected at 0, 14, 28, 42, 56, 70 and 84 days after incubation were analyzed for microbial biomass carbon (MBC). Sequential extraction for metal fractionation of samples was carried out collected at 0, 28, 56 and 84 days. Three soils differed significantly in evolved MBC and ∑CO2-C. Chickpea straw addition significantly increased soil MBC as compared to the wheat straw. Organic amendments significantly increased ∑CO2-C evolution from the soils, which was higher from chickpea straw. The addition of crop residues did not affect total Pb, Cd and Zn contents in soils. The concentration of exchangeable, carbonate bound and residual fractions of Pb, Cd and Zn decreased (6–27%), while the organic matter bound fraction increased (4–75%) with straw addition. Overall, the organic amendments improved microbial activity and reduce the bioavailability of toxic metals in wastewater irrigated soils. Furthermore, organic amendments not only reduce economic losses as they are cheap to produce but also minimize human health risks from heavy metals by hindering their entry into the food chain
    corecore