16 research outputs found

    How to recorganize "ANIMAL"s?

    Get PDF

    Histological assessment of cortical bone changes in diabetic rats

    No full text
    Abstract Background Diabetes mellitus weakens bone strength due to deterioration of bone quality; however, the histological mechanisms are still unknown. We hypothesized that histological assessment of cortical bone would enable us to determine the cause of the bone strength reduction associated with diabetes mellitus. Our aim was to evaluate the histomorphometric changes of cortical bone associated with deterioration of intrinsic bone properties and bone quality in diabetes mellitus. Methods We compared the outcomes of mechanical tests, bone mineral density measured using micro-computed tomography, and histological assessments, by applying Villanueva’s bone stain, to the tibial bones of 40-week-old diabetic and control male rats. Results With respect to mechanical testing, the maximum load and energy absorption were significantly lower in the diabetic than in the control group, although fracture displacement and stiffness were not significantly different between the two groups. Bone mineral density was significantly higher in the diabetic group than in the control group. Bone histomorphometry revealed that the diabetic rats had fewer osteocytes, greater cortical porosity, and increased mineralization in cortical bone compared with the control group. Conclusions Increased mineralization of the cortical bone with greater cortical porosity leads to a weakening of bone strength in diabetes mellitus

    Muscle mass and cross sectional area.

    No full text
    <p>Muscle mass and cross sectional area.</p

    Aerobic exercise training-induced irisin secretion is associated with the reduction of arterial stiffness via nitric oxide production in adults with obesity

    No full text
    This study aimed to clarify whether muscle-derived irisin secretion induced by aerobic exercise training is involved in reduction of arterial stiffness via arterial nitric oxide (NO) productivity in obesity. In animal study, 16 Otsuka Long-Evans Tokushima Fatty (OLETF) rats with obesity were randomly divided into 2 groups: sedentary control (OLETF-CON) and 8-week aerobic treadmill training (OLETF-EX) groups. In human study, 15 subjects with obesity completed 8-week aerobic exercise training for 45 min at 60%–70% peak oxygen uptake intensity for 3 days/week. As a result of animal study, carotid-femoral pulse wave velocity (cfPWV) was decreased, and arterial phosphorylation levels of AMP-activated protein kinase (AMPK), protein kinase B (Akt), and endothelial NO synthase (eNOS), circulating levels of nitrite/nitrate (NOx) and irisin, and muscle messenger RNA expression of fibronectin type III domain containing 5 (Fndc5) were increased in the OLETF-EX group compared with OLETF-CON group. In a human study, regular aerobic exercise reduced cfPWV and elevated circulating levels of NOx and irisin. Furthermore, change in circulating irisin levels by regular exercise was positively correlated with circulating NOx levels and was negatively correlated with cfPWV. Thus, aerobic exercise training-induced increase in irisin secretion may be related to reduction of arterial stiffness achieved by NO production via activated arterial AMPK–Akt–eNOS signaling pathway in obesity. Novelty Aerobic exercise training promoted irisin secretion with upregulation of muscle Fndc5 gene expression in rats with obesity. Irisin affected the activation of arterial AMPK–Akt–eNOS signaling by aerobic exercise training. Increased serum irisin level by aerobic exercise training was associated with reduction of arterial stiffness in obese adults.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Effects of electrical stimulation therapy on the blood flow in chronic critical limb ischemia patients following regenerative therapy

    No full text
    Objectives: We investigated the effects of electrical stimulation therapy on cutaneous and muscle blood flow in critical limb ischemia patients following regenerative therapy. Methods: Three groups were studied: 10 healthy young subjects, 10 elderly subjects, and 7 critical limb ischemia patients after regenerative therapy. After 5 min rest, electrical stimulation was applied at 5 Hz on the tibialis anterior muscle for 10 min. We estimated the relative changes in oxyhemoglobin and total hemoglobin compared to the basal values at rest (Δ[HbO 2 ], Δ[Hb tot ]), which reflected the blood flow in the skin and muscle layer, and we simultaneously measured the tissue O 2 saturation (S t O 2 ) throughout the electrical stimulation and recovery phase by near-infrared spectroscopy. Results: The Δ[HbO 2 ] and Δ[Hb tot ] values of the muscle layer in critical limb ischemia patients increased gradually and remained significantly higher at the 5-min and 10-min recovery periods after the electrical stimulation without reducing the S t O 2 , but there is no significant change in the other two groups. Skin blood flow was not influenced by electrical stimulation in three groups. Conclusion: This improvement of the peripheral circulation by electrical stimulation would be beneficial as the adjunctive therapy after regenerative cell therapy
    corecore