11 research outputs found

    Influence of Npc1 genotype on the toxicity of hydroxypropyl-β-cyclodextrin, a potentially therapeutic agent, in Niemann–Pick Type C disease models

    No full text
    Hydroxypropyl-β-cyclodextrin (HPBCD) is an attractive drug candidate against Niemann–Pick Type C (NPC) disease. However, the safety of HPBCD treatment for NPC patients remains to be elucidated. In this study, we examined the acute toxicity of HPBCD in Npc1-deficient mice. When treated with HPBCD (20,000 mg/kg, subcutaneously), over half of the wild-type (Npc1+/+) or Npc1+/− mice died by 72 h after the injection. In contrast, all of the Npc1−/− mice survived. Marked pathophysiological changes, such as an elevation in serum transaminase and creatinine levels, hepatocellular necrosis, renal tubular damage, interstitial thickening, and hemorrhages in lungs, were induced by the HPBCD treatment in Npc1+/+ or Npc1+/− mice. However, these pathophysiological changes were significantly alleviated in Npc1−/− mice. In addition, in vitro analysis showed that the Npc1 gene deficiency and treatment with U18666A, an Npc1 inhibitor, remarkably attenuated the cytotoxicity of HPBCD in Chinese hamster ovary cells. These results suggest that the NPC1 genotype exacerbates the cytotoxicity of HPBCD and Npc1−/− mice have substantial resistance to the lethality and the organ injury induced by HPBCD injection compared with Npc1+/+ or Npc1+/− mice. We suggest that the Npc1 genotype should be considered in the safety evaluation of HPBCD using experimental animals and cells

    Intracerebroventricular Treatment with 2-Hydroxypropyl-β-Cyclodextrin Decreased Cerebellar and Hepatic Glycoprotein Nonmetastatic Melanoma Protein B (GPNMB) Expression in Niemann–Pick Disease Type C Model Mice

    No full text
    Niemann–Pick disease type C (NPC) is a recessive hereditary disease caused by mutation of the NPC1 or NPC2 gene. It is characterized by abnormality of cellular cholesterol trafficking with severe neuronal and hepatic injury. In this study, we investigated the potential of glycoprotein nonmetastatic melanoma protein B (GPNMB) to act as a biomarker reflecting the therapeutic effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in an NPC mouse model. We measured serum, brain, and liver expression levels of GPNMB, and evaluated their therapeutic effects on NPC manifestations in the brain and liver after the intracerebroventricular administration of HP-β-CD in Npc1 gene-deficient (Npc1−/−) mice. Intracerebroventricular HP-β-CD inhibited cerebellar Purkinje cell damage in Npc1−/− mice and significantly reduced serum and cerebellar GPNMB levels. Interestingly, we also observed that the intracerebral administration significantly reduced hepatic GPNMB expression and elevated serum ALT in Npc1−/− mice. Repeated doses of intracerebroventricular HP-β-CD (30 mg/kg, started at 4 weeks of age and repeated every 2 weeks) drastically extended the lifespan of Npc1−/− mice compared with saline treatment. In summary, our results suggest that GPNMB level in serum is a potential biomarker for evaluating the attenuation of NPC pathophysiology by intracerebroventricular HP-β-CD treatment

    Slerry -Erosion Behavior of Alminum-Silicon Carbide Composite Alloys

    Get PDF
    Composite materials have good mechanical properties such as high strength, high hardness and high wear resistance. They are widely used in the fields of automobiles, civil engineering and many other machine industries. Hopefully it will be used more wide engineering fields such as ship industry and slurry sucking up pumps, in which high resistance for slurry-erosion should be required. And also mechanical properties of the materials are known to depend on the microstructure. In this paper, relationships among microstructure, mechanical properties and slurry-erosion behavior are discussed on the specimens of pure Al, dispersion hardend Al alloys ( Al-Si alloys ), solution hardend alloys ( Al-Mg alloy, Al-Cu alloy ) and SiC particles inserted Al alloys for developing a material for slurry sucking up pump. Based on the experimental results, it was revealed that slurry-erosion resistance of the SiC particles inserted Al alloy shows about seven times higher than that of the dispersion hardend alloys and the solution hardend alloys. It was concluded that the SiC particles inserted Al alloys are a promising materials for the slurry sucking up pump

    In Vitro and In Vivo Evaluation of 6-O-α-Maltosyl-β-Cyclodextrin as a Potential Therapeutic Agent Against Niemann-Pick Disease Type C

    No full text
    Niemann-Pick disease Type C (NPC) is a rare lysosomal storage disease characterized by the dysfunction of intracellular cholesterol trafficking with progressive neurodegeneration and hepatomegaly. We evaluated the potential of 6-O-α-maltosyl-β-cyclodextrin (G2-β-CD) as a drug candidate against NPC. The physicochemical properties of G2-β-CD as an injectable agent were assessed, and molecular interactions between G2-β-CD and free cholesterol were studied by solubility analysis and two-dimensional proton nuclear magnetic resonance spectroscopy. The efficacy of G2-β-CD against NPC was evaluated using Npc1 deficient Chinese hamster ovary (CHO) cells and Npc1 deficient mice. G2-β-CD in aqueous solution showed relatively low viscosity and surface activity; characteristics suitable for developing injectable formulations. G2-β-CD formed higher-order inclusion complexes with free cholesterol. G2-β-CD attenuated dysfunction of intercellular cholesterol trafficking and lysosome volume in Npc1 deficient CHO cells in a concentration dependent manner. Weekly subcutaneous injections of G2-β-CD (2.9 mmol/kg) ameliorated abnormal cholesterol metabolism, hepatocytomegaly, and elevated serum transaminases in Npc1 deficient mice. In addition, a single cerebroventricular injection of G2-β-CD (21.4 μmol/kg) prevented Purkinje cell loss in the cerebellum, body weight loss, and motor dysfunction in Npc1 deficient mice. In summary, G2-β-CD possesses characteristics favorable for injectable formulations and has therapeutic potential against in vitro and in vivo NPC models

    Different solubilizing ability of cyclodextrin derivatives for cholesterol in Niemann–Pick disease type C treatment

    No full text
    Abstract Background Niemann–Pick disease type C (NPC) is a fatal neurodegenerative disorder caused by abnormal intracellular cholesterol trafficking. Cyclodextrins (CDs), the most promising therapeutic candidates for NPC, but with concerns about ototoxicity, are cyclic oligosaccharides with dual functions of unesterified cholesterol (UC) shuttle and sink that catalytically enhance the bidirectional flux and net efflux of UC, respectively, between the cell membrane and the extracellular acceptors. However, the properties of CDs that regulate these functions and how they could be used to improve treatments for NPC are unclear. Methods We estimated CD–UC complexation for nine CD derivatives derived from native α‐, β‐, and γ‐CD with different cavity sizes, using solubility and molecular docking analyses. The stoichiometry and complexation ability of the resulting complexes were investigated in relation to the therapeutic effectiveness and toxicity of each CD derivative in NPC experimental models. Findings We found that shuttle and sink activities of CDs are dependent on cavity size‐dependent stoichiometry and substituent‐associated stability of CD–UC complexation. The ability of CD derivatives to form 1:1 and 2:1 complexes with UC were correlated with their ability to normalize intracellular cholesterol trafficking serving as shuttle and with their cytotoxicity associated with cellular UC efflux acting as sink, respectively, in NPC model cells. Notably, the ability of CD derivatives to form an inclusion complex with UC was responsible for not only efficacy but ototoxicity, while a representative derivative without this ability negligibly affected auditory function, underscoring its preventability. Conclusions Our findings highlight the importance of strategies for optimizing the molecular structure of CDs to overcome this functional dilemma in the treatment of NPC
    corecore