29 research outputs found

    Advantage of Insulin Glulisine Over Regular Insulin in Patients With Type 2 Diabetes and Severe Renal Insufficiency

    Get PDF
    ObjectivesTo compare the efficacy and safety of insulin glulisine over regular insulin in patients with type 2 diabetes and severe renal insufficiency.SubjectsOur study included 18 patients with type 2 diabetes and a mean (range) estimated glomerular filtration rate of 13.2 mL/minute/1.73 m2 (5.8-27.6), which corresponds to stage 4-5 chronic kidney disease.DesignAfter titration of doses, regular insulin was administered thrice daily on Day 1, along with continuous glucose monitoring for 24 h starting at 7 am. Exactly equal doses of insulin glulisine were administered on Day 2. Area under the curve (AUC) for blood glucose level variation after breakfast (AUC-B 0-4), lunch (AUC-L 0-6), and dinner (AUC-D 0-6) were evaluated.ResultsAUC-B 0-4 and AUC-D 0-6 were significantly lower with insulin glulisine than with regular insulin (AUC-B 0-4: 3.3 ± 4.7 vs. 6.2 ± 5.4 × 102 mmol/L·minute, respectively, P = .028; AUC-D 0-6: 1.8 ± 7.3 vs. 6.5 ± 6.2 × 102 mmol/L·minute, respectively, P = .023). In contrast, AUC-L 0-6 was higher with insulin glulisine than with regular insulin (AUC-L 0-6: 7.6 ± 6.4 vs. 4.2 ± 8.7 × 102 mmol/L·minute, respectively, P = .099), suggesting a prolonged hypoglycemic action of regular insulin after lunch.ConclusionsInsulin glulisine effectively suppressed postprandial hyperglycemia, whereas regular insulin caused a prolonged hypoglycemic action. These findings support the effectiveness and safety of insulin glulisine in patients with type 2 diabetes and severe renal insufficiency

    Undercarboxylated osteocalcin does not correlate with insulin resistance as assessed by euglycemic hyperinsulinemic clamp technique in patients with type 2 diabetes mellitus

    No full text
    Abstract Background Recent in vitro and in vivo studies have suggested a critical role of osteocalcin (OC), especially the undercarboxylated form (ucOC), in insulin secretion and insulin sensitivity. The objective of this study was to investigate the association between serum ucOC levels and insulin resistance in humans with type 2 diabetes mellitus. Findings We measured serum ucOC levels in 129 patients with type 2 diabetes. Insulin resistance was assessed using the euglycemic hyperinsulinemic clamp technique. The insulin resistance indices used were the M value, which is the total body glucose disposal rate, and the M/I value, which is the M value adjusted for the steady state plasma insulin level. ucOC levels were not correlated with the M value (ρ = −0.013, p = 0.886) or the M/I value (ρ = 0.001, p = 0.995). Conclusions We found no association between ucOC levels and insulin resistance in patients with type 2 diabetes mellitus.</p

    Lipopolysaccharide-binding protein is associated with arterial stiffness in patients with type 2 diabetes: a cross-sectional study

    No full text
    Abstract Background Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS. Recent evidence indicates the association of circulating LBP levels with obesity, diabetes, and cardiovascular diseases. In this study, we aimed to investigate the relationship between serum LBP levels and arterial stiffness in patients with type 2 diabetes. Methods A total of 196 patients with type 2 diabetes, including 101 men and 95 women, were enrolled in this cross-sectional study. Fasting serum LBP levels were determined by enzyme-linked immunosorbent assay. Arterial stiffness was assessed by measuring the aortic pulse wave velocity (PWV). Results The mean values of serum LBP and aortic PWV were 18.2 μg/mL and 1194 cm/s, respectively. Serum LBP levels were positively correlated with body mass index, triglycerides, high-sensitivity C-reactive protein, and insulin resistance index and were negatively correlated with high-density lipoprotein cholesterol. They were, however, not significantly correlated with aortic PWV in univariate analyses. Multivariate analysis revealed that serum LBP levels were independently and positively associated with aortic PWV (β = 0.135, p = 0.026) after adjusting for age, sex, body mass index, albumin, high-sensitivity C-reactive protein, and other cardiovascular risk factors. Further analyses revealed that the impact of serum LBP levels on aortic PWV was modified by sex, and the association between serum LBP levels and aortic PWV was found to be significant only in men. Conclusions Serum LBP levels are associated with arterial stiffness, independent of obesity and traditional cardiovascular risk factors, especially in men with type 2 diabetes. This study indicates a potential role of the LPS/LBP-induced innate immunity in the development and progression of arterial stiffness in type 2 diabetes

    The Association between Monocyte Surface CD163 and Insulin Resistance in Patients with Type 2 Diabetes

    No full text
    Aim. To investigate the association between monocyte CD163 and insulin resistance in patients with type 2 diabetes. Methods. One hundred sixty-six patients with type 2 diabetes without inflammatory or chronic kidney disease were recruited. The monocyte CD163 levels were measured by flow cytometry and soluble CD163 (sCD163) by ELISA. Insulin resistance was evaluated by the index of the homeostasis model assessment (HOMA-R). Results. The median sCD163 and monocyte CD163 expression levels were 582.9 (472.4–720.0) ng/ml and 6061 (4486–7876) mean fluorescent intensity (MFI), respectively. In a simple regression analysis, monocyte CD163 was inversely correlated with log [HOMA-R] (r=–0.257, p=0.010), and sCD163 was positively correlated with log [HOMA-R] (r=0.198, p=0.042). In multiple regression analyses, monocyte CD163 was an independent contributor to log [HOMA-R] (β=–0.220, p=0.020) even after adjustment of various clinical factors for HOMA-R (R2=0.281, p=0.001), whereas sCD163 was not. Conclusions. Monocyte surface CD163 expression levels were more significantly associated with insulin resistance than sCD163 in patients with type 2 diabetes, suggesting a novel pathophysiological role of CD163

    Leptin is associated with vascular endothelial function in overweight patients with type 2 diabetes

    Get PDF
    BACKGROUND: The adipocyte-derived hormone leptin plays a key role in the regulation of appetite and body weight. Recent studies have suggested that leptin is also involved in the pathogenesis of obesity-related atherosclerosis and cardiovascular disease. In this study, we investigated the association of plasma leptin levels with vascular endothelial function in lean and overweight patients with type 2 diabetes. METHODS: One hundred seventy-one type 2 diabetic patients, of which 85 were overweight (body mass index (BMI) ≥ 25 kg/m(2)), were enrolled in this cross-sectional study. Plasma leptin concentrations were measured by enzyme-linked immunosorbent assay. Flow-mediated dilatation (FMD) of the brachial artery was measured to evaluate vascular endothelial function using ultrasound. RESULTS: No significant difference in FMD was found between the lean and overweight groups (7.0 ± 3.8% and 6.5 ± 3.6%, respectively; p = 0.354). FMD was negatively correlated with age (r = −0.371, p < 0.001) and serum creatinine levels (r = −0.236, p = 0.030), but positively correlated with BMI (r = 0.330, p = 0.002) and plasma leptin levels (r = 0.290, p = 0.007) in the overweight group. FMD was not associated with any parameters in the lean group. Multiple regression analysis including possible atherosclerotic risk factors revealed that the plasma leptin level (β = 0.427, p = 0.013) was independently associated with FMD in the overweight group (R(2) = 0.310, p = 0.025), but not the lean group. CONCLUSION: Plasma leptin levels are associated with vascular endothelial function in overweight patients with type 2 diabetes
    corecore