706 research outputs found

    Radiation Spectra from Advection-Dominated Accretion Flows in a Global Magnetic Field

    Full text link
    We calculate the radiation spectra from advection-dominated accretion flows (ADAFs), taking into account the effects of a global magnetic field. Calculation is based on the analytic model for magnetized ADAFs proposed by Kaburaki, where a large-scale magnetic field controls the accretion process. Adjusting a few parameters, we find that our model can well reproduce the observed spectrum of Sagittarius A^{*}. The result is discussed in comparison with those of well-known ADAF models, where the turbulent viscosity controls the accretion process.Comment: Accepted for publication in Ap

    A Bioeconomic Model of Little Fire Ant Wasmannia auropunctata in Hawaii

    Get PDF
    Reports were scanned in black and white at a resolution of 600 dots per inch and were converted to text using Adobe Paper Capture Plug-in.Wasmannia auropunctata, known as the Little Fire Ant (LFA), was first detected on the island of Hawai‘i (the Big Island) in 1999. It was most probably introduced through imports of contaminated potted plants from mainland USA. We estimate that LFA has now spread to over 4,000 locations on the Big Island and under current management efforts will spread rapidly inundating the Big Island in 15-20 years. Increased efforts in prevention, detections, and mitigation treatments will suppress existing infestations, reduce rate of spread and decrease long term management costs, damages, and human stings. Benefits from increased management are estimated to be 5billionsavingsincluding5 billion savings including 540 million in reduced damages and 2.1 billion fewer sting incidents over 35 years.This research was supported in part by the Tropical and Subtropical Agriculture Research (TSTAR) Program (Award Number 2010-34135-21228), The National institute of Food and Agriculture (NIFA), US Department of Agriculture (USDA

    Multisensory Approaches to Human-Food Interaction

    Get PDF
    Here, we present the outcome of the 4th workshop on Multisensory Approaches to Human-Food Interaction (MHFI), developed in collaboration with ICMI 2020 in Utrecht, The Netherlands. Capitalizing on the increasing interest on multisensory aspects of human-food interaction and the unique contribution that our community offers, we developed a space to discuss ideas ranging from mechanisms of multisensory food perception, through multisensory technologies, to new applications of systems in the context of MHFI. All in all, the workshop involved 11 contributions, which will hopefully further help shape the basis of a field of inquiry that grows as we see progress in our understanding of the senses and the development of new technologies in the context of food

    Editorial: Perspectives on Multisensory Human-Food Interaction

    Get PDF
    Eating and drinking are undoubtedly amongst life’s most multisensory experiences. Take, for instance, the enjoyment of flavor, which is one of the most important elements of such experiences, resulting from the integration of gustatory, (retronasal) olfactory, and possibly also trigeminal/oral-somatosensory cues (Prescott, 2015). Nevertheless, researchers have suggested that all our senses can influence the way in which we perceive flavor, not to mention our eating and drinking experiences. For instance, the color and shape of the food, the background sonic/noise cues in our eating environments, and/or the sounds associated with mastication can all influence our perception and enjoyment of our eating and drinking experiences (Spence, 2020). Human-Food Interaction (HFI) research has been growing steadily in recent years (e.g., Deng et al., 2021). Research into multisensory interactions designed to create, modify, and/or enhance our food-related experiences is one of the core areas of HFI (Multisensory HFI or MHFI, Altarriba Bertran et al., 2019; Velasco and Obrist, 2020). The aim being to further our understanding of the principles that govern the systematic connections between the senses in the context of HFI. In this Research Topic, we called for investigations and applications of systems that create new, or enhance already existing, multisensory eating and drinking experiences (what can be considered the “hacking” of food experiences) in the context of HFI. Moreover, we were also interested in those works that focus on or are based on the principles governing the systematic connections that exist between the senses. HFI also involves the experiencing of food interactions digitally in remote locations. Therefore, we were also interested in sensing and actuation interfaces, new communication mediums, and persisting and retrieving technologies for human food interactions. Enhancing social interactions to augment the eating experience is another issue we wanted to see addressed here, what has been referred to as “digital commensality” (Spence et al., 2019)

    Flux of Atmospheric Neutrinos

    Get PDF
    Atmospheric neutrinos produced by cosmic-ray interactions in the atmosphere are of interest for several reasons. As a beam for studies of neutrino oscillations they cover a range of parameter space hitherto unexplored by accelerator neutrino beams. The atmospheric neutrinos also constitute an important background and calibration beam for neutrino astronomy and for the search for proton decay and other rare processes. Here we review the literature on calculations of atmospheric neutrinos over the full range of energy, but with particular attention to the aspects important for neutrino oscillations. Our goal is to assess how well the properties of atmospheric neutrinos are known at present.Comment: 68 pages, 26 figures. With permission from the Annual Review of Nuclear & Particle Science. Final version of this material is scheduled to appear in the Annual Review of Nuclear & Particle Science Vol. 52, to be published in December 2002 by Annual Reviews (http://annualreviews.org

    Nuclear g-Factor of the 2972 keV Isomer in 130Xe

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Conservation laws for collisional and turbulent transport processes in toroidal plasmas with large mean flows

    Get PDF
    A novel gyrokinetic formulation is presented by including collisional effects into the Lagrangian variational principle to yield the governing equations for background and turbulent electromagnetic fields and gyrocenter distribution functions, which can simultaneously describe classical, neoclassical, and turbulent transport processes in toroidal plasmas with large toroidal flows on the order of the ion thermal velocity. Noether\u27s theorem modified for collisional systems and the collision operator given in terms of Poisson brackets are applied to derivation of the particle, energy, and toroidal momentum balance equations in the conservative forms, which are desirable properties for long-time global transport simulation
    corecore