46 research outputs found
Phase Diagram of Pressure-Induced Superconductivity in EuFe2As2 Probed by High-Pressure Resistivity up to 3.2 GPa
We have constructed a pressuretemperature () phase diagram of
-induced superconductivity in EuFeAs single crystals, via
resistivity () measurements up to 3.2 GPa. As hydrostatic pressure is
applied, an antiferromagnetic (AF) transition attributed to the FeAs layers at
shifts to lower temperatures, and the corresponding resistive
anomaly becomes undetectable for 2.5 GPa. This suggests that the
critical pressure where becomes zero is about 2.5
GPa. We have found that the AF order of the Eu moments survives up to
3.2 GPa without significant changes in the AF ordering temperature
. The superconducting (SC) ground state with a sharp transition
to zero resistivity at 30 K, indicative of bulk
superconductivity, emerges in a pressure range from 2.5
GPa to 3.0 GPa. At pressures close to but outside the SC phase, the
curve shows a partial SC transition (i.e., zero resistivity is not
attained) followed by a reentrant-like hump at approximately
with decreasing temperature. When nonhydrostatic pressure with a uniaxial-like
strain component is applied using a solid pressure medium, the partial
superconductivity is continuously observed in a wide pressure range from 1.1
GPa to 3.2 GPa.Comment: 7 pages, 6 figures, accepted for publication in Physical Review B,
selected as "Editors' Suggestion
Pressure-Induced Antiferromagnetic Bulk Superconductor EuFeAs
We present the magnetic and superconducting phase diagram of EuFeAs
for and . The antiferromagnetic phase of the
Eu moments is completely enclosed in the superconducting phase. The
upper critical field vs. temperature curves exhibit strong concave curvatures,
which can be explained by the Jaccarino-Peter compensation effect due to the
antiferromagnetic exchange interaction between the Eu moments and
conduction electrons.Comment: submitted to the proceedings of the M2S-IX Toky