5 research outputs found

    Roles of ERK and cPLA2 in the Angiotensin II-Mediated Biphasic Regulation of Na+-HCO3− Transport

    No full text
    Regulation of renal proximal transport by angiotensin II (Ang II) is biphasic: low concentrations (picomolar to nanomolar) stimulate reabsorption, but higher concentrations (nanomolar to micromolar) inhibit reabsorption. Traditionally, the stimulatory effect has been attributed to activation of protein kinase C and/or a decrease in intracellular cAMP, whereas the inhibitory action has been attributed to the activation of phospholipase A2 (PLA2) and the subsequent release of arachidonic acid. The Ang II receptor subtype responsible for these effects and the intracellular signaling pathways involved are not completely understood. We isolated proximal tubules from wild-type, Ang II type 1A receptor (AT1A)–deficient, and group IVA cytosolic phospholipase A2 (cPLA2α)–deficient mice, and compared their responses to Ang II. In wild-type mice, we found that the stimulatory and inhibitory effects of Ang II on Na+-HCO3− cotransporter activity are both AT1-mediated but that ERK activation only plays a role in the former. The stimulatory effect of Ang II was also observed in AT1A-deficient mice, suggesting that this occurs through AT1B. In contrast, the inhibitory effects of Ang II appeared to be mediated by cPLA2α activation because high-concentration Ang II stimulated Na+-HCO3− cotransporter activity when cPLA2α activity was abrogated by pharmacological means or genetic knockout. Consistent with this observation, we found that activation of the cPLA2α/P450 pathway suppressed ERK activation. We conclude that Ang II activates ERK and cPLA2α in a concentration-dependent manner via AT1, and that the balance between ERK and cPLA2α activities determines the ultimate response to Ang II in intact proximal tubules

    Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis

    No full text
    Proximal renal tubular acidosis associated with ocular abnormalities such as band keratopathy, glaucoma, and cataracts is caused by mutations in the Na(+)-HCO(3)(–) cotransporter (NBC-1). However, the mechanism by which NBC-1 inactivation leads to such ocular abnormalities remains to be elucidated. By immunological analysis of human and rat eyes, we demonstrate that both kidney type (kNBC-1) and pancreatic type (pNBC-1) transporters are present in the corneal endothelium, trabecular meshwork, ciliary epithelium, and lens epithelium. In the human lens epithelial (HLE) cells, RT-PCR detected mRNAs of both kNBC-1 and pNBC-1. Although a Na(+)-HCO(3)(–) cotransport activity has not been detected in mammalian lens epithelia, cell pH (pH(i)) measurements revealed the presence of Cl(–)-independent, electrogenic Na(+)-HCO(3)(–) cotransport activity in HLE cells. In addition, up to 80% of amiloride-insensitive pH(i) recovery from acid load in the presence of HCO(3)(–)/CO(2) was inhibited by adenovirus-mediated transfer of a specific hammerhead ribozyme against NBC-1, consistent with a major role of NBC-1 in overall HCO(3)(–) transport by the lens epithelium. These results indicate that the normal transport activity of NBC-1 is indispensable not only for the maintenance of corneal and lenticular transparency but also for the regulation of aqueous humor outflow

    Long-term safety and efficacy of alogliptin, a DPP-4 inhibitor, in patients with type 2 diabetes: a 3-year prospective, controlled, observational study (J-BRAND Registry)

    No full text
    Introduction Given an increasing use of dipeptidyl peptidase-4 (DPP-4) inhibitors to treat patients with type 2 diabetes mellitus in the real-world setting, we conducted a prospective observational study (Japan-based Clinical Research Network for Diabetes Registry: J-BRAND Registry) to elucidate the safety and efficacy profile of long-term usage of alogliptin.Research design and methods We registered 5969 patients from April 2012 through September 2014, who started receiving alogliptin (group A) or other classes of oral hypoglycemic agents (OHAs; group B), and were followed for 3 years at 239 sites nationwide. Safety was the primary outcome. Symptomatic hypoglycemia, pancreatitis, skin disorders of non-extrinsic origin, severe infections, and cancer were collected as major adverse events (AEs). Efficacy assessment was the secondary outcome and included changes in hemoglobin A1c (HbA1c), fasting blood glucose, fasting insulin and urinary albumin.Results Of the registered, 5150 (group A: 3395 and group B: 1755) and 5096 (3358 and 1738) were included for safety and efficacy analysis, respectively. Group A patients mostly (>90%) continued to use alogliptin. In group B, biguanides were the primary agents, while DPP-4 inhibitors were added in up to ~36% of patients. The overall incidence of AEs was similar between the two groups (42.7% vs 42.2%). Kaplan-Meier analysis revealed the incidence of cancer was significantly higher in group A than in group B (7.4% vs 4.8%, p=0.040), while no significant incidence difference was observed in the individual cancer. Multivariate Cox regression analysis revealed that the imbalanced patient distribution (more elderly patients in group A than in group B), but not alogliptin usage per se, contributed to cancer development. The incidence of other major AE categories was with no between-group difference. Between-group difference was not detected, either, in the incidence of microvascular and macrovascular complications. HbA1c and fasting glucose decreased significantly at the 0.5-year visit and nearly plateaued thereafter in both groups.Conclusions Alogliptin as a representative of DPP-4 inhibitors was safe and durably efficacious when used alone or with other OHAs for patients with type 2 diabetes in the real world setting
    corecore