3 research outputs found

    The appearance of a compact jet in the soft-intermediate state of 4U 1543-47

    Get PDF
    Recent advancements in the understanding of jet-disc coupling in black hole candidate X-ray binaries (BHXBs) have provided close links between radio jet emission and X-ray spectral and variability behaviour. In 'soft' X-ray states the jets are suppressed, but the current picture lacks an understanding of the X-ray features associated with the quenching or recovering of these jets. Here we show that a brief, ~4 day infrared (IR) brightening during a predominantly soft X-ray state of the BHXB 4U 1543-47 is contemporaneous with a strong X-ray Type B quasi-periodic oscillation (QPO), a slight spectral hardening and an increase in the rms variability, indicating an excursion to the soft-intermediate state (SIMS). This IR 'flare' has a spectral index consistent with optically thin synchrotron emission and most likely originates from the steady, compact jet. This core jet emitting in the IR is usually only associated with the hard state, and its appearance during the SIMS places the 'jet line' between the SIMS and the soft state in the hardness-intensity diagram for this source. IR emission is produced in a small region of the jets close to where they are launched (~ 0.1 light-seconds), and the timescale of the IR flare in 4U 1543-47 is far too long to be caused by a single, discrete ejection. We also present a summary of the evolution of the jet and X-ray spectral/variability properties throughout the whole outburst, constraining the jet contribution to the X-ray flux during the decay.Comment: Accepted to MNRAS. 11 pages, 6 figure

    THE INCLINATION ANGLE AND EVOLUTION OF THE BRAKING INDEX OF PULSARS WITH PLASMA-FILLED MAGNETOSPHERE: APPLICATION TO THE HIGH BRAKING INDEX OF PSR J1640-4631

    No full text
    The recently discovered rotationally powered pulsar PSR J1640-4631 is the first to have a braking index measured, with high enough precision, that is greater than 3. An inclined magnetic rotator in vacuum or plasma would be subject not only to spin-down but also to an alignment torque. The vacuum model can address the braking index only for an almost orthogonal rotator, which is incompatible with the single-peaked pulse profile. The magnetic dipole model with the corotating plasma predicts braking indices between 3 and 3.25. We find that the braking index of 3.15 is consistent with two different inclination angles, 18 degrees.5 +/- 3 degrees and 56 degrees +/- 4 degrees. The smaller angle is preferred given that the pulse profile has a single peak and the radio output of the source is weak. We infer the change in the inclination angle to be at the rate -0 degrees.23 per century, three times smaller in absolute value than the rate recently observed for the Crab pulsar
    corecore