119 research outputs found

    Probing the high momentum component of the deuteron at high Q^2

    Full text link
    The d(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c)^2 was measured over a kinematical range that made it possible to study this reaction for a set of fixed missing momenta as a function of the neutron recoil angle theta_nq and to extract missing momentum distributions for fixed values of theta_nq up to 0.55 GeV/c. In the region of 35 (deg) <= theta_nq <= 45 (deg) recent calculations, which predict that final state interactions are small, agree reasonably well with the experimental data. Therefore these experimental reduced cross sections provide direct access to the high momentum component of the deuteron momentum distribution in exclusive deuteron electro-disintegration.Comment: 5 pages, 2 figure

    Demonstration of a novel technique to measure two-photon exchange effects in elastic e±pe^\pm p scattering

    Full text link
    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct e±pe^\pm p comparisons, which has the potential to make precise measurements over a broad range in Q2Q^2 and scattering angles. We use the Jefferson Lab electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2Q^2 and scattering angle. Nonetheless, this measurement yields a data sample for e±pe^\pm p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. The final ratio of positron to electron scattering: R=1.027±0.005±0.05R=1.027\pm0.005\pm0.05 for =0.206=0.206 GeV2^2 and 0.830≀ϔ≀0.9430.830\leq \epsilon\leq 0.943

    Measurement of Deeply Virtual Compton Scattering with a Polarized Proton Target

    Get PDF
    The longitudinal target-spin asymmetry A_UL for the exclusive electroproduction of high energy photons was measured for the first time in p(e,e'p\gamma). The data have been accumulated at Jefferson Lab with the CLAS spectrometer using 5.7 GeV electrons and a longitudinally polarized NH_3 target. A significant azimuthal angular dependence was observed, resulting from the interference of the Deeply Virtual Compton Scattering and Bethe-Heitler processes. The amplitude of the sin(phi) moment is 0.252 +/- 0.042(stat) +/- 0.020(sys). Theoretical calculations are in good agreement with the magnitude and the kinematic dependence of the target-spin asymmetry, which is sensitive to the generalized parton distributions H and H-tilde.Comment: Modified text slightly, added reference

    Search for the Θ+\Theta^+ pentaquark in the reaction γd→pK−K+n\gamma d \to p K^- K^+ n

    Full text link
    A search for the \thp in the reaction Îłd→pK−K+n\gamma d \to pK^-K^+n was completed using the CLAS detector at Jefferson Lab. A study of the same reaction, published earlier, reported the observation of a narrow \thp resonance. The present experiment, with more than 30 times the integrated luminosity of our earlier measurement, does not show any evidence for a narrow pentaquark resonance. The angle-integrated upper limit on \thp production in the mass range of 1.52 to 1.56 GeV/c2^2 for the Îłd→pK−Θ+\gamma d \to pK^-\Theta^+ reaction is 0.3 nb (95% CL). This upper limit depends on assumptions made for the mass and angular distribution of \thp production. Using \lamstar production as an empirical measure of rescattering in the deuteron, the cross section upper limit for the elementary Îłn→K−Θ+\gamma n \to K^-\Theta^+ reaction is estimated to be a factor of 10 higher, {\it i.e.}, ∌3\sim 3 nb (95% CL).Comment: 5 figures, submitted to PRL, revised for referee comment

    Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction

    Full text link
    New cross sections for the reaction ep→eâ€Čηpep \to e'\eta p are reported for total center of mass energy WW=1.5--2.3 GeV and invariant squared momentum transfer Q2Q^2=0.13--3.3 GeV2^2. This large kinematic range allows extraction of new information about response functions, photocouplings, and ηN\eta N coupling strengths of baryon resonances. A sharp structure is seen at W∌W\sim 1.7 GeV. The shape of the differential cross section is indicative of the presence of a PP-wave resonance that persists to high Q2Q^2. Improved values are derived for the photon coupling amplitude for the S11S_{11}(1535) resonance. The new data greatly expands the Q2Q^2 range covered and an interpretation of all data with a consistent parameterization is provided.Comment: 31 pages, 9 figure

    A Bayesian analysis of pentaquark signals from CLAS data

    Get PDF
    We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a Θ+\Theta^{+} pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a Θ+\Theta^{+}. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner.Comment: 5 pages, 3 figure

    A Precise Measurement of the Neutron Magnetic Form Factor GMn in the Few-GeV2 Region

    Get PDF
    The neutron elastic magnetic form factor GMn has been extracted from quasielastic electron scattering data on deuterium with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic coverage of the measurement is continuous from Q2=1 GeV2 to 4.8 GeV2. High precision was achieved by employing a ratio technique in which many uncertainties cancel, and by a simultaneous in-situ calibration of the neutron detection efficiency, the largest correction to the data. Neutrons were detected using the CLAS electromagnetic calorimeters and the time-of-flight scintillators. Data were taken at two different electron beam energies, allowing up to four semi-independent measurements of GMn to be made at each value of Q2. The dipole parameterization is found to provide a good description of the data over the measured Q2 range.Comment: 14 pages, 5 figures, revtex4, submitted to Physical Review Letters, Revised version has changes recommended by journal referee

    Light Vector Mesons in the Nuclear Medium

    Full text link
    The light vector mesons (ρ\rho, ω\omega, and ϕ\phi) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the ρ\rho meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to e+e−e^{+}e^{-}. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The ρ\rho meson mass spectrum was extracted after the ω\omega and ϕ\phi signals were removed in a nearly model-independent way. Comparisons were made between the ρ\rho mass spectra from the heavy targets (A>2A > 2) with the mass spectrum extracted from the deuterium target. With respect to the ρ\rho-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body effects such as collisional broadening and Fermi motion.Comment: 15 pages, 18 figures, 3 table

    First measurement of coherent ϕ\phi-meson photoproduction on deuteron at low energies

    Get PDF
    The cross section and decay angular distributions for the coherent \phi meson photoproduction on the deuteron have been measured for the first time up to a squared four-momentum transfer t =(p_{\gamma}-p_{\phi})^2 =-2 GeV^2/c^2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The cross sections are compared with predictions from a re-scattering model. In a framework of vector meson dominance, the data are consistent with the total \phi-N cross section \sigma_{\phi N} at about 10 mb. If vector meson dominance is violated, a larger \sigma_{\phi N} is possible by introducing larger t-slope for the \phi N \to \phi N process than that for the \gamma N \to \phi N process. The decay angular distributions of the \phi are consistent with helicity conservation.Comment: 6 page
    • 

    corecore