14 research outputs found

    Wastewater Reclamation in Major Jordanian Industries: A Viable Component of a Circular Economy

    Get PDF
    Water scarcity remains the major looming challenge that is facing Jordan. Wastewater reclamation is considered as an alternative source of fresh water in semi-arid areas with water shortage or increased consumption. In the present study, the current status of wastewater reclamation and reuse in Jordan was analyzed considering 30 wastewater treatment plants (WWTPs). The assessment was based on the WWWTPs’ treatment processes in Jordan, the flowrates scale, and the effluents’ average total dissolved solid (TDS) contents. Accordingly, 60% of the WWTPs in Jordan used activated sludge as a treatment technology; 30 WWTPs were small scale (<1 × 104 m3/day); and a total of 17.932 million m3 treated wastewater had low TDS (<1000 ppm) that generally can be used in industries with relatively minimal cost of treatment. Moreover, the analysis classified the 26 million m3 groundwater abstraction by major industries in Jordanian governorates. The results showed that the reclaimed wastewater can fully offset the industrial demand of fresh water in Amman, Zarqa, and Aqaba governorates. Hence, the environmental assessment showed positive impacts of reclaimed wastewater reuse scenario in terms of water depletion (saving of 72.55 million m3 groundwater per year) and climate change (17.683 million kg CO2Eq reduction). The energy recovery assessment in the small- and medium-scale WWTPs (<10 × 104 m3/day) revealed that generation of electricity by anaerobic sludge digestion equates potentially to an offset of 0.11–0.53 kWh/m3. Finally, several barriers and prospects were put forth to help the stakeholders when considering entering into an agreement to supply and/or reuse reclaimed water

    The effect of strict state measures on the epidemiologic curve of COVID-19 infection in the context of a developing country : a simulation from Jordan

    Get PDF
    COVID-19 has posed an unprecedented global public health threat and caused a significant number of severe cases that necessitated long hospitalization and overwhelmed health services in the most affected countries. In response, governments initiated a series of non-pharmaceutical interventions (NPIs) that led to severe economic and social impacts. The effect of these intervention measures on the spread of the COVID-19 pandemic are not well investigated within developing country settings. This study simulated the trajectories of the COVID-19 pandemic curve in Jordan between February and May and assessed the effect of Jordan’s strict NPI measures on the spread of COVID-19. A modified susceptible, exposed, infected, and recovered (SEIR) epidemic model was utilized. The compartments in the proposed model categorized the Jordanian population into six deterministic compartments: suspected, exposed, infectious pre-symptomatic, infectious with mild symptoms, infectious with moderate to severe symptoms, and recovered. The GLEAMviz client simulator was used to run the simulation model. Epidemic curves were plotted for estimated COVID-19 cases in the simulation model, and compared against the reported cases. The simulation model estimated the highest number of total daily new COVID-19 cases, in the pre-symptomatic compartmental state, to be 65 cases, with an epidemic curve growing to its peak in 49 days and terminating in a duration of 83 days, and a total simulated cumulative case count of 1048 cases. The curve representing the number of actual reported cases in Jordan showed a good pattern compatibility to that in the mild and moderate to severe compartmental states. The reproduction number under the NPIs was reduced from 5.6 to less than one. NPIs in Jordan seem to be effective in controlling the COVID-19 epidemic and reducing the reproduction rate. Early strict intervention measures showed evidence of containing and suppressing the disease

    Improvement of linerboard compressive strength by hot-pressing and addition of recovered lignin from spent pulping liquor

    No full text
    This paper evaluates the effect of addition of precipitated lignin, from spent pulping black liquor, to a wet single-ply linerboard handsheet followed by hot-pressing at different temperatures, on the improvement of its compressive strength. Linerboard handsheets for testing the effect of lignin addition were prepared so that the lignin-modified sheets would have the same basis weights as the control handsheets. Both the commercial and the black liquor lignin were added as a powder to wet handsheets after couching from the handsheet mold. The experiments and testing of the physical and strength properties of dried handsheets were conducted according to TAPPI test methods. The results revealed that the addition of the recovered lignin (at pH of 2) to the wet handsheet followed by hot-pressing at 150°C increased the compressive strength of linerboard handsheets by 10% to 20% above that for handsheets made without the addition of lignin. The same results were achieved using purchased lignin. However, with a 16% addition to linerboard, purchased lignin would be too expensive. These results indicate that inclusion of kraft lignin in linerboard sheets could be proved as an attractive option to reduce linerboard basis weight

    Evaluation of Biogas Production from the Co-Digestion of Municipal Food Waste and Wastewater Sludge at Refugee Camps Using an Automated Methane Potential Test System

    No full text
    The potential benefits of the application of a circular economy&mdash;converting biomass at Za'atari Syrian refugee camps into energy&mdash;was investigated in this study. Representative organic waste and sludge samples were collected from the camp, mixed in different ratios, and analyzed in triplicate for potential biogas yield. Numerous calorific tests were also carried out. The tangential benefit of the co-digestion that was noticed was that it lowered the value of the total solid content in the mixture to the recommended values for wet digestion without the need for freshwater. To test the potential methane production, the automated methane potential test system (AMPTS) and the graduated tubes in the temperature-controlled climate room GB21 were utilized. Also, calorific values were determined for the organic waste and sludge on both a dry and a wet basis. The maximum biogas production from 100% organic waste and 100% sludge using AMPTS was 153 m3 ton-1 and 5.6 m3 ton-1, respectively. Methane yield reached its maximum at a Vs sub/ Vs inoculum range of 0.25&ndash;0.3. In contrast, the methane yield decreased when the Vs sub/ Vs inoculum exceeded 0.46. The optimum ratio of mixing of municipal food waste to sludge must be carefully selected to satisfy the demands of an energy production pilot plant and avoid the environmental issues associated with the sludge amount at wastewater treatment plants (WWTPs). A possible ratio to start with is 60&ndash;80% organic waste, which can produce 21&ndash;65 m3&middot; biogas ton-1 fresh matter (FM). The co-digestion of organic waste and sludge can generate 38 Nm3/day of methane, which, in theory, can generate about 4 MW in remote refugee camps

    Evaluation of Factors Affecting Bulk Chlorine Decay Kinetics for the Zai Water Supply System in Jordan: Case Study

    No full text
    Chlorine decay behavior is significantly variable since it depends on the quality of water and the condition of a distribution system. The effect of various parameters on the bulk chlorine decay kinetics in water samples collected from the Zai water treatment plant in Jordan has been examined. These parameters are reaction time, temperature, TOC, and free chlorine dose. An empirical equation describing the abovementioned effects has been derived. The general trend of chlorine decay decreases upon time and can fairly be representeFd by first-order decay kinetics. An increase in the value of temperature and TOC parameters has proportional effects on the decay of bulk chlorine. However, the data show that the decay constants were found to be inversely proportional to the initial chlorine concentration. A general correlation for the calculation of bulk chlorine decay rate constant as a function of the parameters in question of this study has been proposed. Consequent predictions are in good agreement with the observed results in this study

    Process Modification of Pharmaceutical Tablet Manufacturing Operations: An Eco-Efficiency Approach

    No full text
    A process improvement in a tablet manufacturing process within a pharmaceutical industry was carried out based on an eco-efficiency approach. As it is one of the most energy consuming processes in the production line, the tablet manufacturing process was considered. It has the highest production volume with a complicated and long manufacturing product life cycle. Data were collected on energy inputs and emissions data for the stages of powder direct mixing, particle size reduction, and tableting. A straightforward approach was then used to analyze environmental impacts in terms of GHG emissions. Non- added value steps were removed from the product life cycle process, which has led to significant time and cost savings, as well as to a reduction in the emission. Annual economic savings have been achieved, a time reduction of approximately 71% was attained, and the reduction in GHG emissions and energy cost were 73.2%. The g CO2eq per tablet reduction has been calculated within the process improvement to be 2.06 g CO2eq per tablet instead of 7.71 g CO2eq per tablet

    Pyrolysis of Solid Waste for Bio-Oil and Char Production in Refugees’ Camp: A Case Study

    No full text
    The current research focuses on assessing the potential of municipal solid waste (MSW) conversion into biofuel using pyrolysis process. The MSW samples were taken from Zaatari Syrian Refugee Camp. The physical and chemical characteristics of MSW were studied using proximate and elemental analysis. The results showed that moisture content of MSW is 32.3%, volatile matter (VM) is 67.99%, fixed carbon (FC) content is 5.46%, and ash content is 24.33%. The chemical analysis was conducted using CHNS analyzer and found that the percentage of elements contents: 46% Carbon (C) content, 12% Hydrogen (H2), 2% Nitrogen (N2), 44% Oxygen (O2), and higher heat value (HHV) is 26.14 MJ/kg. The MSW pyrolysis was conducted using tubular fluidized bed reactor (FBR) under inert gas (Nitrogen) at 500 °C with 20 °C/min heating rate and using average particles size 5–10 mm. The products of MSW pyrolysis reaction were: pyrolytic liquid, solid char, and gaseous mixture. The pyrolytic oil and residual char were analyzed using Elemental Analyzer and Fourier Transform Infrared Spectroscopy (FTIR). The results of FTIR showed that oil product has considerable amounts of alkenes, alkanes, and carbonyl groups due to high organic compounds contents in MSW. The elemental analysis results showed that oil product content consists of 55% C, 37% O2, and the HHV is 20.8 MJ/kg. The elemental analysis of biochar showed that biochar content consists of 47% C, 49% O2, and HHV is 11.5 MJ/kg. Further research is recommended to study the effects of parameters as reactor types and operating conditions to assess the feasibility of MSW pyrolysis, in addition to the environmental impact study which is necessary to identify and predict the relevant environmental effects of this process

    Effect of bromide and other factors on brominated trihalomethanes formation in treated water supply in Jordan

    No full text
    Chlorine disinfection of drinking water containing natural organic matter leads to the formation of brominated trihalomethanes (THMs) in the presence of bromide ions. In the present study, the results of an experimental investigation into the factors forming THMs in the presence of bromide ions are presented. The experiments were conducted using samples collected from Zai water treatment plant in Jordan under different operating conditions such as reaction time, temperature, pH, TOC, and the ratio between bromide ions and initial chlorine dose. The experimental results showed that the formation of all brominated THMs, mainly CHBr3), increased with increasing of any of these parameter values and decreased chloroform formation. CHCl2Br and CHClBr2 increased with increasing the experimental parameters and thereafter remained constant or slightly decreased. Moreover, n(Br) values which represents bromine incorporation into THMs are almost in the range from 2.5 to 2.7. However, the values of n(Br) increased with increasing bromide concentration and remained constant or slightly decreased with increasing contact time under the studied range of bromide ion concentrations

    Baseline carbon emission assessment in water utilities in Jordan using ECAM tool

    No full text
    This study presents a baseline assessment of carbon emissions in water utilities in Madaba, Jordan. The Energy Performance and Carbon Emissions Assessment and Monitoring Tool (ECAM) is applied in the present study in order to reduce indirect and direct emissions. Input data for the assessment included inter alia, population, water volumes, energy consumption, and type of wastewater treatment. The methodology focuses on the greenhouse gas (GHG) emissions and energy use that is directly associated with the utility operations covering the whole water cycle. The ECAM's Quick Assessment revealed that 89.7% of the energy is consumed in abstraction and distribution systems of water supply, whereas wastewater collection, treatment, and discharge consumed only 10.3% in Madaba. The detailed ECAM tool assessment results showed that total GHG emissions from the entire water and wastewater system in Madaba are approximately 28.122 million kg CO2/year. The water supply is the major contributor to GHG accounting for 62.4%, while 37.6% of GHG emissions result from sewage treatment, and are associated with treatment process requirements considered in this work, in addition to sludge transport from septic tanks to the wastewater treatment plant. The findings of this work can help the utility to undertake energy efficiency and GHG reduction measures.Miyahuna Company [12.9046.9-006.00]The authors are grateful for the collaboration provided by Miyahuna Company staff in the stage of site visits, data gathering and analysis, and consultative meetings undertaken throughout the WaCCliM project (No. 12.9046.9-006.00) period. This work is co-published by the Water, Energy, and Environment Center, University of Jordan research team and GIZ as part of the Project ` Water and Wastewater Companies for Climate Mitigation WaCCliM' activities. The Project is implemented by GIZ in partnership with the International Water Association and on behalf of the German the Federal Ministry of the Environment, Nature Conservation and Nuclear Safety (BMU). All rights for the content of this paper are reserved for GIZ, the views presented are entirely the responsibility of the authors
    corecore