19 research outputs found

    On the Possibility of Anisotropic Curvature in Cosmology

    Full text link
    In addition to shear and vorticity a homogeneous background may also exhibit anisotropic curvature. Here a class of spacetimes is shown to exist where the anisotropy is solely of the latter type, and the shear-free condition is supported by a canonical, massless 2-form field. Such spacetimes possess a preferred direction in the sky and at the same time a CMB which is isotropic at the background level. A distortion of the luminosity distances is derived and used to test the model against the CMB and supernovae (using the Union catalog), and it is concluded that the latter exhibit a higher-than-expected dependence on angular position. It is shown that future surveys could detect a possible preferred direction by observing ~ 20 / (\Omega_{k0}^2) supernovae over the whole sky.Comment: Extended SNe analysis and corrected some CMB results. Text also extended and references added. 8 pages, 5 figure

    Qualitative Analysis of Universes with Varying Alpha

    Get PDF
    Assuming a Friedmann universe which evolves with a power-law scale factor, a=tna=t^{n}, we analyse the phase space of the system of equations that describes a time-varying fine structure 'constant', α\alpha, in the Bekenstein-Sandvik-Barrow-Magueijo generalisation of general relativity. We have classified all the possible behaviours of α(t)\alpha (t) in ever-expanding universes with different nn and find new exact solutions for α(t)\alpha (t). We find the attractors points in the phase space for all nn. In general, α\alpha will be a non-decreasing function of time that increases logarithmically in time during a period when the expansion is dust dominated (n=2/3n=2/3), but becomes constant when n>2/3n>2/3. This includes the case of negative-curvature domination (n=1n=1). α\alpha also tends rapidly to a constant when the expansion scale factor increases exponentially. A general set of conditions is established for α\alpha to become asymptotically constant at late times in an expanding universe.Comment: 26 pages, 6 figure

    Ellipsoidal configurations in the de Sitter spacetime

    Full text link
    The cosmological constant Λ\Lambda modifies certain properties of large astrophysical rotating configurations with ellipsoidal geometries, provided the objects are not too compact. Assuming an equilibrium configuration and so using the tensor virial equation with Λ\Lambda we explore several equilibrium properties of homogeneous rotating ellipsoids. One shows that the bifurcation point, which in the oblate case distinguishes the Maclaurin ellipsoid from the Jacobi ellipsoid, is sensitive to the cosmological constant. Adding to that, the cosmological constant allows triaxial configurations of equilibrium rotating the minor axis as solutions of the virial equations. The significance of the result lies in the fact that minor axis rotation is indeed found in nature. Being impossible for the oblate case, it is permissible for prolate geometries, with Λ\Lambda zero and positive. For the triaxial case, however, an equilibrium solution is found only for non-zero positive Λ\Lambda. Finally, we solve the tensor virial equation for the angular velocity and display special effects of the cosmological constant there.Comment: 15 pages, 11 figures, published in Class. Quant. Grav. References adde

    The present universe in the Einstein frame, metric-affine R+1/R gravity

    Full text link
    We study the present, flat isotropic universe in 1/R-modified gravity. We use the Palatini (metric-affine) variational principle and the Einstein (metric-compatible connected) conformal frame. We show that the energy density scaling deviates from the usual scaling for nonrelativistic matter, and the largest deviation occurs in the present epoch. We find that the current deceleration parameter derived from the apparent matter density parameter is consistent with observations. There is also a small overlap between the predicted and observed values for the redshift derivative of the deceleration parameter. The predicted redshift of the deceleration-to-acceleration transition agrees with that in the \Lambda-CDM model but it is larger than the value estimated from SNIa observations.Comment: 11 pages; published versio

    Ellipsoidal universe in the brane world

    Full text link
    We study a scenario of the ellipsoidal universe in the brane world cosmology with a cosmological constant in the bulk . From the five-dimensional Einstein equations we derive the evolution equations for the eccentricity and the scale factor of the universe, which are coupled to each other. It is found that if the anisotropy of our universe is originated from a uniform magnetic field inside the brane, the eccentricity decays faster in the bulk in comparison with a four-dimensional ellipsoidal universe. We also investigate the ellipsoidal universe in the brane-induced gravity and find the evolution equation for the eccentricity which has a contribution determined by the four- and five-dimensional Newton's constants. The role of the eccentricity is discussed in explaining the quadrupole problem of the cosmic microwave background.Comment: 15 pages, 1 figure, Version 3, references added, contents expande

    Constraining f(R) gravity in the Palatini formalism

    Full text link
    Although several models of f(R)f(R) theories of gravity within the Palatini approach have been studied already, the interest was concentrated on those that have an effect on the late-time evolution of the universe, by the inclusion for example of terms inversely proportional to the scalar curvature in the gravitational action. However, additional positive powers of the curvature also provide interesting early-time phenomenology, like inflation, and the presence of such terms in the action is equally, if not more, probable. In the present paper models with both additional positive and negative powers of the scalar curvature are studied. Their effect on the evolution of the universe is investigated for all cosmological eras, and various constraints are put on the extra terms in the actions. Additionally, we examine the extent to which the new terms in positive powers affect the late-time evolution of the universe and the related observables, which also determines our ability to probe their presence in the gravitational action.Comment: reference update and minor changes to match published versio

    Cosmology with exponential potentials

    Full text link
    We examine in the context of general relativity the dynamics of a spatially flat Robertson-Walker universe filled with a classical minimally coupled scalar field \phi of exponential potential ~ e^{-\mu\phi} plus pressureless baryonic matter. This system is reduced to a first-order ordinary differential equation, providing direct evidence on the acceleration/deceleration properties of the system. As a consequence, for positive potentials, passage into acceleration not at late times is generically a feature of the system, even when the late-times attractors are decelerating. Furthermore, the structure formation bound, together with the constraints on the present values of \Omega_{m}, w_{\phi} provide, independently of initial conditions and other parameters, necessary conditions on \mu. Special solutions are found to possess intervals of acceleration. For the almost cosmological constant case w_{\phi} ~ -1, as well as, for the generic late-times evolution, the general relation \Omega_{\phi}(w_{\phi}) is obtained.Comment: RevTex4, 9 pages, 2 figures, References adde

    Comparing two approaches to Hawking radiation of Schwarzschild-de Sitter black holes

    Full text link
    We study two different ways to analyze the Hawking evaporation of a Schwarzschild-de Sitter black hole. The first one uses the standard approach of surface gravity evaluated at the possible horizons. The second method derives its results via the Generalized Uncertainty Principle (GUP) which offers a yet different method to look at the problem. In the case of a Schwarzschild black hole it is known that this methods affirms the existence of a black hole remnant (minimal mass MminM_{\rm min}) of the order of Planck mass mplm_{\rm pl} and a corresponding maximal temperature TmaxT_{\rm max} also of the order of mplm_{\rm pl}. The standard T(M)T(M) dispersion relation is, in the GUP formulation, deformed in the vicinity of Planck length lpll_{\rm pl} which is the smallest value the horizon can take. We generalize the uncertainty principle to Schwarzschild-de Sitter spacetime with the cosmological constant Λ=1/mΛ2\varLambda=1/m_\varLambda^2 and find a dual relation which, compared to MminM_{\rm min} and TmaxT_{\rm max}, affirms the existence of a maximal mass MmaxM_{\rm max} of the order (mpl/mΛ)mpl(m_{\rm pl}/m_\varLambda)m_{\rm pl}, minimum temperature Tmin∼mΛT_{\rm min} \sim m_\varLambda. As compared to the standard approach we find a deformed dispersion relation T(M)T(M) close to lpll_{\rm pl} and in addition at the maximally possible horizon approximately at rΛ=1/mΛr_\varLambda=1/m_\varLambda. T(M)T(M) agrees with the standard results at lpl≪r≪rΛl_{\rm pl} \ll r \ll r_\varLambda (or equivalently at Mmin≪M≪MmaxM_{\rm min} \ll M \ll M_{\rm max}).Comment: new references adde

    Modified-Source Gravity and Cosmological Structure Formation

    Full text link
    One way to account for the acceleration of the universe is to modify general relativity, rather than introducing dark energy. Typically, such modifications introduce new degrees of freedom. It is interesting to consider models with no new degrees of freedom, but with a modified dependence on the conventional energy-momentum tensor; the Palatini formulation of f(R)f(R) theories is one example. Such theories offer an interesting testing ground for investigations of cosmological modified gravity. In this paper we study the evolution of structure in these ``modified-source gravity'' theories. In the linear regime, density perturbations exhibit scale dependent runaway growth at late times and, in particular, a mode of a given wavenumber goes nonlinear at a higher redshift than in the standard Λ\LambdaCDM model. We discuss the implications of this behavior and why there are reasons to expect that the growth will be cut off in the nonlinear regime. Assuming that this holds in a full nonlinear analysis, we briefly describe how upcoming measurements may probe the differences between the modified theory and the standard Λ\LambdaCDM model.Comment: 22 pages, 6 figures, uses iopart styl
    corecore