6,041 research outputs found

    Paramagnetic reentrant effect in high purity mesoscopic AgNb proximity structures

    Full text link
    We discuss the magnetic response of clean Ag coated Nb proximity cylinders in the temperature range 150 \mu K < T < 9 K. In the mesoscopic temperature regime, the normal metal-superconductor system shows the yet unexplained paramagnetic reentrant effect, discovered some years ago [P. Visani, A. C. Mota, and A. Pollini, Phys. Rev. Lett. 65, 1514 (1990)], superimposing on full Meissner screening. The logarithmic slope of the reentrant paramagnetic susceptibility chi_para(T) \propto \exp(-L/\xi_N) is limited by the condition \xi_N=n L, with \xi_N=\hbar v_F/2 \pi k_B T, the thermal coherence length and n=1,2,4. In wires with perimeters L=72 \mu m and L=130 \mu m, we observe integer multiples n=1,2,4. At the lowest temperatures, \chi_para compensates the diamagnetic susceptibility of the \textit{whole} AgNb structure.Comment: 4 pages, 4 figures (color

    Diamagnetic response of cylindrical normal metal - superconductor proximity structures with low concentration of scattering centers

    Full text link
    We have investigated the diamagnetic response of composite NS proximity wires, consisting of a clean silver or copper coating, in good electrical contact to a superconducting niobium or tantalum core. The samples show strong induced diamagnetism in the normal layer, resulting in a nearly complete Meissner screening at low temperatures. The temperature dependence of the linear diamagnetic susceptibility data is successfully described by the quasiclassical Eilenberger theory including elastic scattering characterised by a mean free path l. Using the mean free path as the only fit parameter we found values of l in the range 0.1-1 of the normal metal layer thickness d_N, which are in rough agreement with the ones obtained from residual resistivity measurements. The fits are satisfactory over the whole temperature range between 5 mK and 7 K for values of d_N varying between 1.6 my m and 30 my m. Although a finite mean free path is necessary to correctly describe the temperature dependence of the linear response diamagnetic susceptibility, the measured breakdown fields in the nonlinear regime follow the temperature and thickness dependence given by the clean limit theory. However, there is a discrepancy in the absolute values. We argue that in order to reach quantitative agreement one needs to take into account the mean free path from the fits of the linear response. [PACS numbers: 74.50.+r, 74.80.-g]Comment: 10 pages, 9 figure

    Momentum Space Regularizations and the Indeterminacy in the Schwinger Model

    Full text link
    We revisited the problem of the presence of finite indeterminacies that appear in the calculations of a Quantum Field Theory. We investigate the occurrence of undetermined mathematical quantities in the evaluation of the Schwinger model in several regularization scenarios. We show that the undetermined character of the divergent part of the vacuum polarization tensor of the model, introduced as an {\it ansatz} in previous works, can be obtained mathematically if one introduces a set of two parameters in the evaluation of these quantities. The formal mathematical properties of this tensor and their violations are discussed. The analysis is carried out in both analytical and sharp cutoff regularization procedures. We also show how the Pauli Villars regularization scheme eliminates the indeterminacy, giving a gauge invariant result in the vector Schwinger model.Comment: 10 pages, no figure

    A generalization of the S-function method applied to a Duffing-Van der Pol forced oscillator

    Full text link
    In [1,2] we have developed a method (we call it the S-function method) that is successful in treating certain classes of rational second order ordinary differential equations (rational 2ODEs) that are particularly `resistant' to canonical Lie methods and to Darbouxian approaches. In this present paper, we generalize the S-function method making it capable of dealing with a class of elementary 2ODEs presenting elementary functions. Then, we apply this method to a Duffing-Van der Pol forced oscillator, obtaining an entire class of first integrals

    Phase Transition and Monopoles Densities in a Nearest Neighbors Two-Dimensional Spin Ice Model

    Full text link
    In this work, we show that, due to the alternating orientation of the spins in the ground state of the artificial square spin ice, the influence of a set of spins at a certain distance of a reference spin decreases faster than the expected result for the long range dipolar interaction, justifying the use of the nearest neighbor two dimensional square spin ice model as an effective model. Using an extension of the model presented in ref. [Scientific Reports 5, 15875 (2015)], considering the influence of the eight nearest neighbors of each spin on the lattice, we analyze the thermodynamics of the model and study the monopoles and string densities dependence as a function of the temperature.Comment: 11 pages, 8 figure

    Domain wall description of superconductivity

    Get PDF
    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.Comment: 9 pages, 5 figures, Latex. Version to appear in PL
    • …
    corecore