6 research outputs found

    Deep slow-slip events promote seismicity in northeastern Japan megathrust

    Get PDF
    The sliding movement between oceanic and crustal plates in subduction zones is accommodated through both earthquakes and quasi-static or transient aseismic slip. On northeastern Japan megathrust, aseismic transients, known as slow-slip events, are suggested to precede and trigger major earthquakes in their immediate surroundings. However, the geodetic evidence for these episodic slow-slip events, as well as their link to the seismicity on neighboring locked segments of the megathrust, is missing. Here, we combine the on-shore geodetic data set with seismic observations during the interseismic period of 1996–2003 and demonstrate that episodic slow-slip events are prevalent across the down-dip portion (∌30–70 km depth) of the megathrust and the associated stress changes modulate the seismicity rate on the neighboring seismogenic zone. Consequently, small- to moderate-size earthquakes are periodically triggered, whose interaction through a domino effect might occasionally lead to major earthquakes. This observation has a profound impact on the estimation of seismic hazard in the region, introducing a new triggering mechanism that acts across the megathrust to the extent that has not been acknowledged before

    The 2020 Westmorland, California Earthquake Swarm as Aftershocks of a Slow Slip Event Sustained by Fluid Flow

    Get PDF
    Swarms are bursts of earthquakes without an obvious mainshock. Some have been observed to be associated with transient aseismic fault slip, while others are thought to be related to fluids. However, the association is rarely quantitative due to insufficient data quality. We use high-quality GPS/GNSS, InSAR, and relocated seismicity to study a swarm of >2,000 earthquakes which occurred between 30 September and 6 October 2020, near Westmorland, California. Using 5 min sampled Global Positioning System (GPS) supplemented with InSAR, we document a spontaneous shallow Mw 5.2 slow slip event that preceded the swarm by 2–15 hr. The earthquakes in the early phase were predominantly non-interacting and driven primarily by the slow slip event resulting in a nonlinear expansion. A stress-driven model based on the rate-and-state friction successfully explains the overall spatial and temporal evolution of earthquakes, including the time lag between the onset of the slow slip event and the swarm. Later, a distinct back front and a square root of time expansion of clustered seismicity on en-echelon fault structures suggest that fluids helped sustain the swarm. Static stress triggering analysis using Coulomb stress and statistics of interevent times suggest that 45%–65% of seismicity was driven by the slow slip event, 10%–35% by inter-earthquake interactions, and 10%–30% by fluids. Our model also provides constraints on the friction parameter and the pore pressure and suggests that this swarm behaved like an aftershock sequence but with the mainshock replaced by the slow slip event

    Supporting data and codes for The 2020 Westmorland, California earthquake swarm as aftershocks of a slow slip event sustained by fluid flow

    No full text
    These data and software supplement the following publication: Sirorattanakul, K., Ross, Z. E., Khoshmanesh, M., Cochran, E. S., Acosta, M. A., & Avouac, J.- P. (2022). The 2020 Westmorland, California earthquake swarm as aftershocks of a slow slip event sustained by fluid flow, Journal of Geophysical Research: Solid Earth, e2022JB024693. https://doi.org/10.1029/2022JB024693 Any questions can be directed to Krittanon Sirorattanakul (Pond) at [email protected]
    corecore