645 research outputs found
Study of plasma wakefield acceleration mechanism for emittance dominated regimes via hybrid and pic simulations
Electron plasma wakefield acceleration (PWFA) mechanism is a promising non conventional
acceleration scheme. Nonetheless further investigation is still needed to fully uncover
the instability mechanisms so to mitigate them and make PWFA an effective tool. This
work focuses in this direction, we discuss the necessity to use well matched driver bunches
to further mitigate witness instabilities. Specifically we propose to inject driver bunches
with larger emittance than the matched one (overcompressed bunch) so to let the system
reach the matching condition by itself. This preliminary results lead us to the following
consideration: while a limited number of cases can be studied with a particle-in-cell code,
we understand the necessity for fast systematic analysis: we briefly introduce the hybrid
code Architect
Plasma density profile characterization for resonant plasmawakefield acceleration experiment at SPARC-LAB
Spot size measurements in the Eli-NP compton gamma source
A high brightness electron Linac is being built in the Compton Gamma Source at the ELI Nuclear Physics facility in Romania. To achieve the design luminosity, a train of 32 bunches with a nominal charge of 250 pC and 16 ns spacing , will collide with the laser beam in the interaction point. Electron beam spot size is measured with an OTR (optical transition radiation) profile moni-tors. In order to measure the beam properties, the optical radiation detecting system must have the necessary accu-racy and resolution. This paper deals with the studies of different optic configurations to achieve the magnifica-tion, resolution and accuracy desired considering design and technological constraints; we will compare several configurations of the optical detection line to justify the one chosen for the implementation in the Lina
Optical issues for the diagnostic stations for the ELI-NP compton gamma source
A high brightness electron Linac is being built in the Compton Gamma Source at the ELI Nuclear Physics facility in Romania. To achieve the design luminosity, a train of 32 bunches, 16 ns spaced, with a nominal charge of 250 pC will collide with the laser beam in the interaction point. Electron beam spot size is measured with optical transition radiation (OTR) profile monitors. In order to measure the beam properties, the optical radiation detecting system must have the necessary accuracy and resolution. This paper deals with the studies of different optic configurations to achieve the magnification, resolution and accuracy in order to measure very small beam (below 30 μm) or to study the angular distribution of the OTR and therefore the energy of the beam. Several configurations of the optical detection line will be studied both with simulation tools (e.g. Zemax) and experimentally. The paper will deal also with the sensibility of optic system (in terms of depth of field, magnification and resolution) to systematic error
Quadrupole scan emittance measurements for the ELI-NP compton gamma source
The high brightness electron LINAC of the Compton
Gamma Source at the ELI Nuclear Physics facility in Roma-
nia is accelerating a train of 32 bunches with a nominal total
charge of
250 pC
and nominal spacing of
16 ns
. To achieve
the design gamma flux, all the bunches along the train must
have the designed Twiss parameters. Beam sizes are mea-
sured with optical transition radiation monitors, allowing a
quadrupole scan for Twiss parameters measurements. Since
focusing the whole bunch train on the screen may lead to
permanent screen damage, we investigate non-conventional
scans such as scans around a maximum of the beam size
or scans with a controlled minimum spot size. This paper
discusses the implementation issues of such a technique in
the actual machine layou
Efficient plasma wakefield acceleration simulations via kinetic-hydro code
Start-to-end simulations are needed for sensitivity stud- ies and online analysis of experimental data of the Plasma Wakefield Acceleration experiment COMB at SPARC_LAB facility, Frascati (Italy). Ad hoc tools are needed for the plasma section modeling. Particle in cell codes are the most widely used tools for this purpose, but they suffer from the considerable amount of computational resources they re- quire. We seek for a simple, portable, quick-to-run approach. For this purpose we introduce a time-explicit cylindrical hybrid fluid-kinetic code: Architect. The beam particles are treated with PIC-like kinetic approach, while the plasma wake is treated as a fluid. Since the number of computational particles used by the hybrid model is significantly reduced with respect of full PIC codes with the same number of di- mensions, the time required for a simulation is reduced as well
Intense terahertz pulses from SPARC-LAB coherent radiation source
The linac-based Terahertz source at the SPARC_LAB test facility is able to gene
rate highly intense Terahertz broadband
pulses
via
coherent transition radiation (CTR) from high brightness electron beams. The THz pulse duration is typically
down to 100 fs RMS and can be tuned through the electron bunch duration and shaping. The measured stored energy in a
single THz pulse has reached 40
μ
J, which corresponds to a peak
electric field of 1.6 MV/cm at the THz focus. Here we
present the main features, in particular spatial and sp
ectral distributions and energy
characterizations of the
SPARC_LAB THz source, which is very competitive for investigations in Condensed Matter, as well as a valid tool for
electron beam longitudinal diagnostics
Thermal issues for the optical transition radiation screen for the ELI-NP compton gamma source
A high brightness electron LINAC is being built in the Compton Gamma Source at the ELI Nuclear Physics facility in Romania. To achieve the design luminosity, a train of 32 bunches, 16 ns spaced, with a nominal charge of 250 pC will collide with a laser beam in two interaction points. Electron beam spot size is measured with Optical Transition Radiation (OTR) profile monitors. In order to measure the beam properties, the OTR screens must sustain the thermal and mechanical stress due to the energy deposited by bunches. This paper is an ANSYS study of the issues due to the high energy transferred to the OTR screens. Thermal multicycle analysis will be shown; each analysis will be followed by a structural analysis in order to investigate the performance of the materia
Conceptual design of electron beam diagnostics for high brightness plasma accelerator
A design study of the diagnostics of a high brightness linac, based on X-band
structures, and a plasma accelerator stage, has been delivered in the framework
of the EuPRAXIA@SPARC_LAB project. In this paper, we present a conceptual
design of the proposed diagnostics, using state of the art systems and new and
under development devices. Single shot measurements are preferable for plasma
accelerated beams, including emittance, while m level and fs scale beam
size and bunch length respectively are requested. The needed to separate the
driver pulse (both laser or beam) from the witness accelerated bunch imposes
additional constrains for the diagnostics. We plan to use betatron radiation
for the emittance measurement just at the end of the plasma booster, while
other single-shot methods must be proven before to be implemented. Longitudinal
measurements, being in any case not trivial for the fs level bunch length, seem
to have already a wider range of possibilities
- …
