187 research outputs found

    Exact Solution of an Evolutionary Model without Ageing

    Full text link
    We introduce an age-structured asexual population model containing all the relevant features of evolutionary ageing theories. Beneficial as well as deleterious mutations, heredity and arbitrary fecundity are present and managed by natural selection. An exact solution without ageing is found. We show that fertility is associated with generalized forms of the Fibonacci sequence, while mutations and natural selection are merged into an integral equation which is solved by Fourier series. Average survival probabilities and Malthusian growth exponents are calculated indicating that the system may exhibit mutational meltdown. The relevance of the model in the context of fissile reproduction groups as many protozoa and coelenterates is discussed.Comment: LaTeX file, 15 pages, 2 ps figures, to appear in Phys. Rev.

    Labour supply and skills demands in fashion retailing

    Get PDF
    If, as Adam Smith once famously suggested, Britain was a nation of shopkeepers then it is now a nation of shopworkers. Retail is now a significant part of the UK economy, accounting for £256 billion in sales and one-third of all consumer spending (Skillsmart, 2007). It is the largest private sector employer in the UK, employing 3m workers, or 1 in 10 of the working population. For future job creation in the UK economy retail is also similarly prominent and the sector is expected to create a further 250,000 jobs to 2014 (Skillsmart, 2007). The centrality of retail to economic success and job creation is apparent in other advanced economies. For example, within the US, retail sales is the occupation with the largest projected job growth in the period 2004-2014 (Gatta et al., 2009) and in Australia retail accounts for 1 in 6 workers (Buchanan et al., 2003). Within the UK these workers are employed in approximately 290,000 businesses, encompassing large and small organizations and also a number of sub-sectors. This variance suggests that retail should not be regarded as homogenous in its labour demands. Hart et al. (2007) note how skill requirements and the types of workers employed may differ across the sector. This chapter further opens up this point, providing an analysis of the labour supply and skills demands for the sub-sectors of clothing, footwear and leather goods, which are described by Skillsmart (2007: 48) as being 'significant categories in UK retailing'

    Class I major histocompatibility complexes loaded by a periodate trigger

    Get PDF
    Class I major histocompatibility complexes (MHCs) present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. The unstable nature of unliganded MHC necessitates the production of recombinant class I complexes through in vitro refolding reactions in the presence of an added excess of peptides. This strategy is not amenable to high-throughput production of vast collections of class I complexes. To address this issue, we recently designed photocaged MHC ligands that can be cleaved by a UV light trigger in the MHC bound state under conditions that do not affect the integrity of the MHC structure. The results obtained with photocaged MHC ligands demonstrate that conditional MHC ligands can form a generally applicable concept for the creation of defined peptide−MHCs. However, the use of UV exposure to mediate ligand exchange is unsuited for a number of applications, due to the lack of UV penetration through cell culture systems and due to the transfer of heat upon UV irradiation, which can induce evaporation. To overcome these limitations, here, we provide proof-of-concept for the generation of defined peptide−MHCs by chemical trigger-induced ligand exchange. The crystal structure of the MHC with the novel chemosensitive ligand showcases that the ligand occupies the expected binding site, in a conformation where the hydroxyl groups should be reactive to periodate. We proceed to validate this technology by producing peptide−MHCs that can be used for T cell detection. The methodology that we describe here should allow loading of MHCs with defined peptides in cell culture devices, thereby permitting antigen-specific T cell expansion and purification for cell therapy. In addition, this technology will be useful to develop miniaturized assay systems for performing high-throughput screens for natural and unnatural MHC ligands

    Population screening for colorectal cancer: the implications of an ageing population

    Get PDF
    Population screening for colorectal cancer (CRC) has recently commenced in the United Kingdom supported by the evidence of a number of randomised trials and pilot studies. Certain factors are known to influence screening cost-effectiveness (e.g. compliance), but it remains unclear whether an ageing population (i.e. demographic change) might also have an effect. The aim of this study was to simulate a population-based screening setting using a Markov model and assess the effect of increasing life expectancy on CRC screening cost-effectiveness. A Markov model was constructed that aimed, using a cohort simulation, to estimate the cost-effectiveness of CRC screening in an England and Wales population for two timescales: 2003 (early cohort) and 2033 (late cohort). Four model outcomes were calculated; screened and non-screened cohorts in 2003 and 2033. The screened cohort of men and women aged 60 years were offered biennial unhydrated faecal occult blood testing until the age of 69 years. Life expectancy was assumed to increase by 2.5 years per decade. There were 407 552 fewer people entering the model in the 2033 model due to a lower birth cohort, and population screening saw 30 345 fewer CRC-related deaths over the 50 years of the model. Screening the 2033 cohort cost £96 million with cost savings of £43 million in terms of detection and treatment and £28 million in palliative care costs. After 30 years of follow-up, the cost per life year saved was £1544. An identical screening programme in an early cohort (2003) saw a cost per life year saved of £1651. Population screening for CRC is costly but enables cost savings in certain areas and a considerable reduction in mortality from CRC. This Markov simulation suggests that the cost-effectiveness of population screening for CRC in the United Kingdom may actually be improved by rising life expectancies

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Ubiquitous Crossmodal Stochastic Resonance in Humans: Auditory Noise Facilitates Tactile, Visual and Proprioceptive Sensations

    Get PDF
    BACKGROUND: Stochastic resonance is a nonlinear phenomenon whereby the addition of noise can improve the detection of weak stimuli. An optimal amount of added noise results in the maximum enhancement, whereas further increases in noise intensity only degrade detection or information content. The phenomenon does not occur in linear systems, where the addition of noise to either the system or the stimulus only degrades the signal quality. Stochastic Resonance (SR) has been extensively studied in different physical systems. It has been extended to human sensory systems where it can be classified as unimodal, central, behavioral and recently crossmodal. However what has not been explored is the extension of this crossmodal SR in humans. For instance, if under the same auditory noise conditions the crossmodal SR persists among different sensory systems. METHODOLOGY/PRINCIPAL FINDINGS: Using physiological and psychophysical techniques we demonstrate that the same auditory noise can enhance the sensitivity of tactile, visual and propioceptive system responses to weak signals. Specifically, we show that the effective auditory noise significantly increased tactile sensations of the finger, decreased luminance and contrast visual thresholds and significantly changed EMG recordings of the leg muscles during posture maintenance. CONCLUSIONS/SIGNIFICANCE: We conclude that crossmodal SR is a ubiquitous phenomenon in humans that can be interpreted within an energy and frequency model of multisensory neurons spontaneous activity. Initially the energy and frequency content of the multisensory neurons' activity (supplied by the weak signals) is not enough to be detected but when the auditory noise enters the brain, it generates a general activation among multisensory neurons of different regions, modifying their original activity. The result is an integrated activation that promotes sensitivity transitions and the signals are then perceived. A physiologically plausible model for crossmodal stochastic resonance is presented

    High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial.

    Get PDF
    BACKGROUND: High-sensitivity cardiac troponin assays permit use of lower thresholds for the diagnosis of myocardial infarction, but whether this improves clinical outcomes is unknown. We aimed to determine whether the introduction of a high-sensitivity cardiac troponin I (hs-cTnI) assay with a sex-specific 99th centile diagnostic threshold would reduce subsequent myocardial infarction or cardiovascular death in patients with suspected acute coronary syndrome. METHODS: In this stepped-wedge, cluster-randomised controlled trial across ten secondary or tertiary care hospitals in Scotland, we evaluated the implementation of an hs-cTnI assay in consecutive patients who had been admitted to the hospitals' emergency departments with suspected acute coronary syndrome. Patients were eligible for inclusion if they presented with suspected acute coronary syndrome and had paired cardiac troponin measurements from the standard care and trial assays. During a validation phase of 6-12 months, results from the hs-cTnI assay were concealed from the attending clinician, and a contemporary cardiac troponin I (cTnI) assay was used to guide care. Hospitals were randomly allocated to early (n=5 hospitals) or late (n=5 hospitals) implementation, in which the high-sensitivity assay and sex-specific 99th centile diagnostic threshold was introduced immediately after the 6-month validation phase or was deferred for a further 6 months. Patients reclassified by the high-sensitivity assay were defined as those with an increased hs-cTnI concentration in whom cTnI concentrations were below the diagnostic threshold on the contemporary assay. The primary outcome was subsequent myocardial infarction or death from cardiovascular causes at 1 year after initial presentation. Outcomes were compared in patients reclassified by the high-sensitivity assay before and after its implementation by use of an adjusted generalised linear mixed model. This trial is registered with ClinicalTrials.gov, number NCT01852123. FINDINGS: Between June 10, 2013, and March 3, 2016, we enrolled 48 282 consecutive patients (61 [SD 17] years, 47% women) of whom 10 360 (21%) patients had cTnI concentrations greater than those of the 99th centile of the normal range of values, who were identified by the contemporary assay or the high-sensitivity assay. The high-sensitivity assay reclassified 1771 (17%) of 10 360 patients with myocardial injury or infarction who were not identified by the contemporary assay. In those reclassified, subsequent myocardial infarction or cardiovascular death within 1 year occurred in 105 (15%) of 720 patients in the validation phase and 131 (12%) of 1051 patients in the implementation phase (adjusted odds ratio for implementation vs validation phase 1·10, 95% CI 0·75 to 1·61; p=0·620). INTERPRETATION: Use of a high-sensitivity assay prompted reclassification of 1771 (17%) of 10 360 patients with myocardial injury or infarction, but was not associated with a lower subsequent incidence of myocardial infarction or cardiovascular death at 1 year. Our findings question whether the diagnostic threshold for myocardial infarction should be based on the 99th centile derived from a normal reference population. FUNDING: The British Heart Foundation

    Investigation of the Performance of the New Orleans Flood Protection System in Hurricane Katrina on August 29, 2005: Volume 1

    Get PDF
    This report presents the results of an investigation of the performance of the New Orleans regional flood protection system during and after Hurricane Katrina, which struck the New Orleans region on August 29, 2005. This event resulted in the single most costly catastrophic failure of an engineered system in history. Current damage estimates at the time of this writing are on the order of 100to100 to 200 billion in the greater New Orleans area, and the official death count in New Orleans and southern Louisiana at the time of this writing stands at 1,293, with an additional 306 deaths in nearby southern Mississippi. An additional approximately 300 people are currently still listed as “missing”; it is expected that some of these missing were temporarily lost in the shuffle of the regional evacuation, but some of these are expected to have been carried out into the swamps and the Gulf of Mexico by the storm’s floodwaters, and some are expected to be recovered in the ongoing sifting through the debris of wrecked homes and businesses, so the current overall regional death count of 1,599 is expected to continue to rise a bit further. More than 450,000 people were initially displaced by this catastrophe, and at the time of this writing more than 200,000 residents of the greater New Orleans metropolitan area continue to be displaced from their homes by the floodwater damages from this storm event. This investigation has targeted three main questions as follow: (1) What happened?, (2) Why?, and (3) What types of changes are necessary to prevent recurrence of a disaster of this scale again in the future? To address these questions, this investigation has involved: (1) an initial field reconnaissance, forensic study and data gathering effort performed quickly after the arrival of Hurricanes Katrina (August 29, 2005) and Rita (September 24, 2005), (2) a review of the history of the regional flood protection system and its development, (3) a review of the challenging regional geology, (4) detailed studies of the events during Hurricanes Katrina and Rita, as well as the causes and mechanisms of the principal failures, (4) studies of the organizational and institutional issues affecting the performance of the flood protection system, (5) observations regarding the emergency repair and ongoing interim levee reconstruction efforts, and (6) development of findings and preliminary recommendations regarding changes that appear warranted in order to prevent recurrence of this type of catastrophe in the future. In the end, it is concluded that many things went wrong with the New Orleans flood protection system during Hurricane Katrina, and that the resulting catastrophe had it roots in three main causes: (1) a major natural disaster (the Hurricane itself), (2) the poor performance of the flood protection system, due to localized engineering failures, questionable judgments, errors, etc. involved in the detailed design, construction, operation and maintenance of the system, and (3) more global “organizational” and institutional problems associated with the governmental and local organizations responsible for the design, construction, operation, maintenance and funding of the overall flood protection system
    corecore