874 research outputs found
Integrated Generation of High-dimensional Entangled Photon States and Their Coherent Control
We demonstrate the generation of high-dimensional entangled photon pairs with a Hilbert-space dimensionality larger than 100 from an on-chip nonlinear microcavity, and introduce a coherent control scheme using standard telecommunications components
Symptomatic Sinus Node Disease: Natural History After Permanent Ventricular Pacing *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75403/1/j.1540-8159.1979.tb03650.x.pd
Quantized bulk fermions in the Randall-Sundrum brane model
The lowest order quantum corrections to the effective action arising from
quantized massive fermion fields in the Randall-Sundrum background spacetime
are computed. The boundary conditions and their relation with gauge invariance
are examined in detail. The possibility of Wilson loop symmetry breaking in
brane models is also analysed. The self-consistency requirements, previously
considered in the case of a quantized bulk scalar field, are extended to
include the contribution from massive fermions. It is shown that in this case
it is possible to stabilize the radius of the extra dimensions but it is not
possible to simultaneously solve the hierarchy problem, unless the brane
tensions are dramatically fine tuned, supporting previous claims.Comment: 25 pages, 1 figure, RevTe
The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.)
Molecular markers and genetic linkage maps are pre-requisites for molecular breeding in any crop species. In case of peanut or groundnut (Arachis hypogaea L.), an amphidiploid (4X) species, not a single genetic map is, however, available based on a mapping population derived from cultivated genotypes. In order to develop a genetic linkage map for tetraploid cultivated groundnut, a total of 1,145 microsatellite or simple sequence repeat (SSR) markers available in public domain as well as unpublished markers from several sources were screened on two genotypes, TAG 24 and ICGV 86031 that are parents of a recombinant inbred line mapping population. As a result, 144 (12.6%) polymorphic markers were identified and these amplified a total of 150 loci. A total of 135 SSR loci could be mapped into 22 linkage groups (LGs). While six LGs had only two SSR loci, the other LGs contained 3 (LG_AhXV) to 15 (LG_AhVIII) loci. As the mapping population used for developing the genetic map segregates for drought tolerance traits, phenotyping data obtained for transpiration, transpiration efficiency, specific leaf area and SPAD chlorophyll meter reading (SCMR) for 2 years were analyzed together with genotyping data. Although, 2–5 QTLs for each trait mentioned above were identified, the phenotypic variation explained by these QTLs was in the range of 3.5–14.1%. In addition, alignment of two linkage groups (LGs) (LG_AhIII and LG_AhVI) of the developed genetic map was shown with available genetic maps of AA diploid genome of groundnut and Lotus and Medicago. The present study reports the construction of the first genetic map for cultivated groundnut and demonstrates its utility for molecular mapping of QTLs controlling drought tolerance related traits as well as establishing relationships with diploid AA genome of groundnut and model legume genome species. Therefore, the map should be useful for the community for a variety of applications
Dimensionless cosmology
Although it is well known that any consideration of the variations of
fundamental constants should be restricted to their dimensionless combinations,
the literature on variations of the gravitational constant is entirely
dimensionful. To illustrate applications of this to cosmology, we explicitly
give a dimensionless version of the parameters of the standard cosmological
model, and describe the physics of Big Bang Neucleosynthesis and recombination
in a dimensionless manner. The issue that appears to have been missed in many
studies is that in cosmology the strength of gravity is bound up in the
cosmological equations, and the epoch at which we live is a crucial part of the
model. We argue that it is useful to consider the hypothetical situation of
communicating with another civilization (with entirely different units),
comparing only dimensionless constants, in order to decide if we live in a
Universe governed by precisely the same physical laws. In this thought
experiment, we would also have to compare epochs, which can be defined by
giving the value of any {\it one} of the evolving cosmological parameters. By
setting things up carefully in this way one can avoid inconsistent results when
considering variable constants, caused by effectively fixing more than one
parameter today. We show examples of this effect by considering microwave
background anisotropies, being careful to maintain dimensionlessness
throughout. We present Fisher matrix calculations to estimate how well the fine
structure constants for electromagnetism and gravity can be determined with
future microwave background experiments. We highlight how one can be misled by
simply adding to the usual cosmological parameter set
Quantum self-consistency of brane models
Continuing on our previous work, we consider a class of higher dimensional
brane models with the topology of , where
is a one-parameter compact manifold and two branes of codimension 1 are located
at the orbifold fixed points. We consider a set-up where such a solution arises
from Einstein-Yang-Mills theory and evaluate the one-loop effective potential
induced by gauge fields and by a generic bulk scalar field. We show that this
type of brane models resolves the gauge hierarchy between the Planck and
electroweak scales through redshift effects due to the warp factor . The value of is then fixed by minimizing the effective potential. We
find that, as in the Randall Sundrum case, the gauge field contribution to the
effective potential stabilises the hierarchy without fine-tuning as long as the
laplacian on has a zero eigenvalue. Scalar fields can
stabilise the hierarchy depending on the mass and the non-minimal coupling. We
also address the quantum self-consistency of the solution, showing that the
classical brane solution is not spoiled by quantum effects.Comment: 10 page
Testing the Void against Cosmological data: fitting CMB, BAO, SN and H0
In this paper, instead of invoking Dark Energy, we try and fit various
cosmological observations with a large Gpc scale under-dense region (Void)
which is modeled by a Lemaitre-Tolman-Bondi metric that at large distances
becomes a homogeneous FLRW metric. We improve on previous analyses by allowing
for nonzero overall curvature, accurately computing the distance to the
last-scattering surface and the observed scale of the Baryon Acoustic peaks,
and investigating important effects that could arise from having nontrivial
Void density profiles. We mainly focus on the WMAP 7-yr data (TT and TE),
Supernova data (SDSS SN), Hubble constant measurements (HST) and Baryon
Acoustic Oscillation data (SDSS and LRG). We find that the inclusion of a
nonzero overall curvature drastically improves the goodness of fit of the Void
model, bringing it very close to that of a homogeneous universe containing Dark
Energy, while by varying the profile one can increase the value of the local
Hubble parameter which has been a challenge for these models. We also try to
gauge how well our model can fit the large-scale-structure data, but a
comprehensive analysis will require the knowledge of perturbations on LTB
metrics. The model is consistent with the CMB dipole if the observer is about
15 Mpc off the centre of the Void. Remarkably, such an off-center position may
be able to account for the recent anomalous measurements of a large bulk flow
from kSZ data. Finally we provide several analytical approximations in
different regimes for the LTB metric, and a numerical module for CosmoMC, thus
allowing for a MCMC exploration of the full parameter space.Comment: 70 pages, 12 figures, matches version accepted for publication in
JCAP. References added, numerical values in tables changed due to minor bug,
conclusions unaltered. Numerical module available at
http://web.physik.rwth-aachen.de/download/valkenburg
Current status of turbulent dynamo theory: From large-scale to small-scale dynamos
Several recent advances in turbulent dynamo theory are reviewed. High
resolution simulations of small-scale and large-scale dynamo action in periodic
domains are compared with each other and contrasted with similar results at low
magnetic Prandtl numbers. It is argued that all the different cases show
similarities at intermediate length scales. On the other hand, in the presence
of helicity of the turbulence, power develops on large scales, which is not
present in non-helical small-scale turbulent dynamos. At small length scales,
differences occur in connection with the dissipation cutoff scales associated
with the respective value of the magnetic Prandtl number. These differences are
found to be independent of whether or not there is large-scale dynamo action.
However, large-scale dynamos in homogeneous systems are shown to suffer from
resistive slow-down even at intermediate length scales. The results from
simulations are connected to mean field theory and its applications. Recent
work on helicity fluxes to alleviate large-scale dynamo quenching, shear
dynamos, nonlocal effects and magnetic structures from strong density
stratification are highlighted. Several insights which arise from analytic
considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue
"Magnetism in the Universe" (ed. A. Balogh
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
- …