206 research outputs found

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    CD4+ Regulatory and Effector/Memory T Cell Subsets Profile Motor Dysfunction in Parkinson’s Disease

    Get PDF
    Animal models and clinical studies have linked the innate and adaptive immune system to the pathology of Parkinson’s disease (PD). Despite such progress, the specific immune responses that influence disease progression have eluded investigators. Herein, we assessed relationships between T cell phenotype and function with PD progression. Peripheral blood lymphocytes from two separate cohorts, a discovery cohort and a validation cohort, totaling 113 PD patients and 96 age- and environment-matched caregivers were examined by flow cytometric analysis and T cell proliferation assays. Increased effector/memory T cells (Tem), defined as CD45RO+ and FAS+ CD4+ T cells and decreased CD31+ and Ξ±4Ξ²7+ CD4+ T cells were associated with progressive Unified Parkinson’s Disease Rating Scale III scores. However, no associations were seen between immune biomarkers and increased age or disease duration. Impaired abilities of regulatory T cells (Treg) from PD patients to suppress effector T cell function was observed. These data support the concept that chronic immune stimulation, notably Tem activation and Treg dysfunction is linked to PD pathobiology and disease severity, but not disease duration. The association of T cell phenotypes with motor symptoms provides fresh avenues for novel biomarkers and therapeutic designs

    Menstrual function among women exposed to polybrominated biphenyls: A follow-up prevalence study

    Get PDF
    BACKGROUND: Alteration in menstrual cycle function is suggested among rhesus monkeys and humans exposed to polybrominated biphenyls (PBBs) and structurally similar polychlorinated biphenyls (PCBs). The feedback system for menstrual cycle function potentially allows multiple pathways for disruption directly through the hypothalamic-pituitary-ovarian axis and indirectly through alternative neuroendocrine axes. METHODS: The Michigan Female Health Study was conducted during 1997–1998 among women in a cohort exposed to PBBs in 1973. This study included 337 women with self-reported menstrual cycles of 20–35 days (age range: 24–56 years). Current PBB levels were estimated by exponential decay modeling of serum PBB levels collected from 1976–1987 during enrollment in the Michigan PBB cohort. Linear regression models for menstrual cycle length and the logarithm of bleed length used estimated current PBB exposure or enrollment PBB exposure categorized in tertiles, and for the upper decile. All models were adjusted for serum PCB levels, age, body mass index, history of at least 10% weight loss in the past year, physical activity, smoking, education, and household income. RESULTS: Higher levels of physical activity were associated with shorter bleed length, and increasing age was associated with shorter cycle length. Although no overall association was found between PBB exposure and menstrual cycle characteristics, a significant interaction between PBB exposures with past year weight loss was found. Longer bleed length and shorter cycle length were associated with higher PBB exposure among women with past year weight loss. CONCLUSION: This study suggests that PBB exposure may impact ovarian function as indicated by menstrual cycle length and bleed length. However, these associations were found among the small number of women with recent weight loss suggesting either a chance finding or that mobilization of PBBs from lipid stores may be important. These results should be replicated with larger numbers of women exposed to similar lipophilic compounds

    Proteomic Modeling for HIV-1 Infected Microglia-Astrocyte Crosstalk

    Get PDF
    Background: HIV-1-infected and immune competent brain mononuclear phagocytes (MP; macrophages and microglia) secrete cellular and viral toxins that affect neuronal damage during advanced disease. In contrast, astrocytes can affect disease by modulating the nervous system’s microenvironment. Interestingly, little is known how astrocytes communicate with MP to influence disease. Methods and Findings: MP-astrocyte crosstalk was investigated by a proteomic platform analysis using vesicular stomatitis virus pseudotyped HIV infected murine microglia. The microglial-astrocyte dialogue was significant and affected microglial cytoskeleton by modulation of cell death and migratory pathways. These were mediated, in part, through F-actin polymerization and filament formation. Astrocyte secretions attenuated HIV-1 infected microglia neurotoxicity and viral growth linked to the regulation of reactive oxygen species. Conclusions: These observations provide unique insights into glial crosstalk during disease by supporting astrocytemediated regulation of microglial function and its influence on the onset and progression of neuroAIDS. The results open new insights into previously undisclosed pathogenic mechanisms and open the potential for biomarker discovery an

    Role of Kinesin Heavy Chain in Crumbs Localization along the Rhabdomere Elongation in Drosophila Photoreceptor

    Get PDF
    BACKGROUND:Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the extension of the apical membrane domain, adherens junction (AJ), and rhabdomere along the growing proximal-distal axis during Drosophila photoreceptor morphogenesis. In developing Drosophila photoreceptors, a stabilized microtubule structure was discovered and its presence was linked to polarity protein localization. It was therefore hypothesized that the microtubules may provide trafficking routes for the polarity proteins during photoreceptor morphogenesis. This study has examined whether Kinesin heavy chain (Khc), a subunit of the microtubule-based motor Kinesin-1, is essential in polarity protein localization in developing photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS:Because a genetic interaction was found between crb and khc, Crb localization was examined in the developing photoreceptors of khc mutants. khc was dispensable during early eye differentiation and development. However, khc mutant photoreceptors showed a range of abnormalities in the apical membrane domain depending on the position along the proximal-distal axis in pupal photoreceptors. The khc mutant showed a progressive mislocalization in the apical domain along the distal-proximal axis during rhabdomere elongation. The khc mutation also led to a similar progressive defect in the stabilized microtubule structures, strongly suggesting that Khc is essential for microtubule structure and Crb localization during distal to proximal rhabdomere elongation in pupal morphogenesis. This role of Khc in apical domain control was further supported by khc's gain-of-function phenotype. Khc overexpression in photoreceptors caused disruption of the apical membrane domain and the stabilized microtubules in the developing photoreceptors. CONCLUSIONS/SIGNIFICANCE:In summary, we examined the role of khc in the regulation of the apical Crb domain in developing photoreceptors. Since the rhabdomeres in developing pupal eyes grow along the distal-proximal axis, these phenotypes suggest that Khc is essential for the microtubule structures and apical membrane domains during the distal-proximal elongation of photoreceptors, but is dispensable for early eye development
    • …
    corecore