127 research outputs found

    Rotationally Resolved Spectroscopy of Asteroid Pairs: No Spectral Variation Suggests Fission is followed by Settling of Dust

    Full text link
    We examine the spectral properties of asteroid pairs that were disrupted in the last 2 Myrs to examine whether the site of the fission can be revealed. We studied the possibility that the sub-surface material, perhaps on one hemisphere, has spectral characteristics differing from the original weathered surface, by performing rotationally-resolved spectroscopic observations to look for local variations as the asteroid rotates. We observed 11 asteroids in pairs in the near-IR and visible range. Photometry was also conducted to determine the rotational phases of a spectrum on the asteroid lightcurves. We do not detect any rotational spectral variations within the signal-to-noise, which allow us to constrain the extent of any existing surface heterogeneity. For each observed spectrum of a longitudinal segment of an asteroid, we estimate the maximal size of an un-detected "spot" with a spectral signature different than the average. For 5 asteroids the maximal diameter of such a spot is smaller by a factor of two than the diameter of the secondary member. Therefore, the site of the fission is larger than any area with a unique spectral parameters and the site of the fission does not have a unique spectrum. In the case of an S-complex asteroid, where the site of fission is expected to present non-weathered spectra, a lack of a fission spot can be explained if the rotational-fission process is followed by the spread of dust that re-accumulates on the primary asteroid and covers it homogeneously. This is demonstrated for the young asteroid 6070 that presents an Sq-type spectrum while its inner material, that is presumably revealed on the surface of its secondary member, 54827, has a fresher, Q-type spectrum. The spread of dust observed in the disruption event of asteroid P/2013 R3, might be an example of such a process and an indication that it was indeed formed in a rotational-fission event.Comment: 16 pages, 15 figures, 6 Tables. Accepted for publication in Icaru

    A Spectroscopic Comparison of HED Meteorites and V-type Asteroids in the Inner Main Belt

    Get PDF
    V-type asteroids in the inner Main Belt (a < 2.5 AU) and the HED meteorites are thought to be genetically related to one another as collisional fragments from the surface of the large basaltic asteroid 4 Vesta. We investigate this relationship by comparing the near-infrared (0.7-2.5 micron) spectra of 39 V-type asteroids to laboratory spectra of HED meteorites. The central wavelengths and areas spanned by the 1 and 2 micron pyroxene-olivine absorption bands that are characteristic of planetary basalts are measured for both the asteroidal and meteoritic data. The band centers are shown to be well correlated, however the ratio of areas spanned by the 1 and 2 micron absorption bands are much larger for the asteroids than for the meteorites. We argue that this offset in band area ratio is consistent with our currently limited understanding of the effects of space weathering, however we can not rule out the possibility that this offset is due to compositional differences. Several other possible causes of this offset are discussed. Amongst these inner Main Belt asteroids we do not find evidence for non-Vestoid mineralogies. Instead, these asteroids seem to represent a continuum of compositions, consistent with an origin from a single differentiated parent body. In addition, our analysis shows that V-type asteroids with low inclinations (i < 6 degrees) tend to have band centers slightly shifted towards long wavelengths. This may imply that more than one collision on Vesta's surface was responsible for producing the observed population of inner belt V-type asteroids. Finally, we offer several predictions that can be tested when the Dawn spacecraft enters into orbit around Vesta in the summer of 2011.Comment: 27 pages, 11 figures, 6 tables, Accepted to Icaru

    Unexpected D-type Interlopers in the Inner Main Belt

    Full text link
    Very red featureless asteroids (spectroscopic D-types) are expected to have formed in the outer solar system far from the sun. They comprise the majority of asteroids in the Jupiter Trojan population, and are also commonly found in the outer main belt and among Hildas. The first evidence for D-types in the inner and middle parts of the main belt was seen in the Sloan Digital Sky Survey (SDSS). Here we report follow-up observations of SDSS D-type candidates in the near-infrared. Based on follow up observations of 13 SDSS D-type candidates, we find a ~20% positive confirmation rate. Known inner belt D-types range in diameter from roughly 7 to 30 kilometers. Based on these detections we estimate there are ~100 inner belt D-types with diameters between 2.5 and 20km. The lower and upper limits for total mass of inner belt D-types is 2x101610^{16} kg to 2x101710^{17} kg which represents 0.01% to 0.1% of the mass of the inner belt. The inner belt D-types have albedos at or above the upper end typical for D-types which raises the question as to whether these inner belt bodies represent only a subset of D-types, they have been altered by external factors such as weathering processes, or if they are compositionally distinct from other D-types. All D-types and candidates have diameters less than 30km, yet there is no obvious parent body in the inner belt. Dynamical models have yet to show how D-types originating from the outer solar system could penetrate into the inner reaches of the Main Belt under current scenarios of planet formation and subsequent Yarkovsky drift.Comment: 16 pages, 3 figures, 4 tables -- accepted for publication in Icaru

    The Effect of Lunar-like Satellites on the Orbital Infrared Light Curves of Earth-analog Planets

    Get PDF
    We investigate the influence of lunar-like satellites on the infrared orbital light curves of Earth-analog extra-solar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet. We use an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of the Earth while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g. via spectroscopy or visible-wavelength detection of specular glint from a surface ocean) only the largest (approximately Mars-size) lunar-like satellites can be detected by light curve data from a TPF-like instrument (i.e. one that achieves a photometric signal-to-noise of 10-20 at infrared wavelengths). Non-detection of a lunar-like satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established then the presence of a lunar-like satellite cannot be inferred from infrared data, thus demonstrating that photometric light curves alone can only be used for preliminary study of extra-solar Earth-like planets.Comment: 34 pages, 7 figures, accepted to Astrobiolog

    Terrestrial Exoplanet Light Curves

    Full text link
    The phase or orbital light curves of extrasolar terrestrial planets in reflected or emitted light will contain information about their atmospheres and surfaces complementary to data obtained by other techniques such as spectrosopy. We show calculated light curves at optical and thermal infrared wavelengths for a variety of Earth-like and Earth-unlike planets. We also show that large satellites of Earth-sized planets are detectable, but may cause aliasing effects if the lightcurve is insufficiently sampled.Comment: To appear in Proceedings of the IAU Colloquium 200, Direct Imaging of Exoplanets; Science & Technology, Villefranche-sur-mer, France, October 2-7, 200
    • …
    corecore