23 research outputs found
Nanocarbons And Quantum Dots Formation In New Hybrid Materials
We present technique of obtaining complex hybrid structures combining the multi-walled carbon nanotubes or multi-layer graphene and luminescent hydrophobic semiconductor core/shell quantum dots CdSe/ZnS. As a result, a formation of quantum dot decorated carbon nanotubes and graphene films is evidenced by 2D microluminescence and micro-Raman mapping of quantum dots and nanocarbons, respectively, where a spatial correlation between the luminescence and Raman signals is found. © 2014 SPIE.912612-02-00938; RFBR; Russian Foundation for Basic Research; 12-02-01263; RFBR; Russian Foundation for Basic ResearchKalantar-Zadeh, K., (2008) Nanotechnology-Enabled Sensors, p. 490. , K. Kalantar-zadeh, B. Fry. New York.: Springer Science & Business Media(1955) Springer Handbook of Nanotechnology, , Ed. B. Bhusha.-New York.: Springer Science & Business Media, 2010, ISBN: 978-3-642-02524-2Cattanach, K., Kulkarni, R.D., Kozlov, M., Manohar, S.K., Flexible carbon nanotube sensors for nerve agent simulants (2006) Nanotechnology, 17, pp. 4123-4128Peng, S., O'Keeffe, J., Wei, C., Cho, K., Kong, J., Chen, R., Franklin, N., Dai, H., Carbon nanotube chemical and mechanical sensors (2001) Proceedings of the 3rd International Workshop on Structural Health Monitoring, pp. 1-8. , USA, September 17-19, 2001, Stanford University, StanfordSnow, E.S., Perkins, F.K., Houser, E.H., Badescu, S.C., Reinecke, T.L., (2005) Science, 307, pp. 1942-1945. , Chemical detection with a single-walled carbon nanotube capacitorStar, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.-C.P., Gas sensor array based on metal-decorated carbon nanotubes (2006) J. Phys. Chem. B, 110, pp. 21014-21020Xu, Z., Gao, H., Guoxin, H., Solution-based synthesis and characterization of a silver nanoparticle-graphene hybrid film Carbon, 49 (14), pp. 4731-4738Cao, A., Liu, Z., Chu, S., Wu, M., Ye, Z., Cai, Z., Chang, Y., Liu, Y., A facile one-step method to produce graphene-cds quantum dot nanocomposites as promising optoelectronic materials (2010) Adv. Mater, 22, pp. 103-106Yang, Y.-K., He, Ch.-E., He, W.-J., Yu, L.-J., Peng, R.-G., Xie, X.-L., Wang, X.-B., Mai, Y.-W., Reduction of silver nanoparticles onto graphene oxide nanosheets with N,Ndimethylformamide and SERS activities of GO/Ag composites (2011) J Nanopart. Res, 13, pp. 5571-5581Lightcap, V., Kamat, P.V., Fortification of cdse quantum dots with graphene oxide. Excited state interactions and light energy conversion (2012) J. Am. Chem. Soc, 134, pp. 7109-7116Ghosh, A., Rao, K.V., Voggu, R., George, S.J., Non-covalent functionalization, solubilization of graphene and single-walled carbon nanotubes with aromatic donor and acceptor molecules (2010) Chemical Physics Letters, 488, pp. 198-201Kim, Y.-T., Han, J.H., Hong, B.H., Kwon, Y.-U., Electrochemical synthesis of cdse quantum-dot arrays on a graphene basal plane using mesoporous silica thin-film templates (2010) Adv. Mater, 22, pp. 515-518Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., Arquer De Garcia, F.P., Gatti, F., Koppens, L.F.H., Hybrid graphene-quantum dot phototransistors with ultrahigh gain (2012) Nature Nanotechnology, 7, pp. 363-368Wang, Y., Yao, H.-B., Wang, X.-H., Yu, Sh.-H., One-pot facile decoration of CdSe quantum dots on graphene nanosheets: Novel graphene-CdSe nanocomposites with tunable fluorescent properties (2011) J. Mater. Chem, 21, pp. 562-566Murray, C.B., Gaschler, W., Sun, S., Doyle, H., Betley, T.A., Kagan, C.R., Colloidal synthesis of nanocrystals and nanocrystal superlattices IBM J. Res. & Dev., 45 (1), pp. 47-56Ermakov, V.A., Alaferdov, A.V., Vaz, A.R., Baranov, A.V., Moshkalev, S.A., Nonlocal laser annealing to improve thermal contacts between multi-layer graphene and metals (2013) Nanotechnology, 24 (15), p. 15530110Bogdanov, K., Fedorov, A., Osipov, V., Enoki, T., Takai, K., Hayashi, T., Ermakov, V., Moshkalev A, S., Annealing-induced structural changes of carbon onions: High-resolution transmission electron microscopy and Raman studies Baranov Carbon, , 02/201
Thin film conductive composites based on graphite nanoplatelets for heating applications
The studies of graphene and nanographite in the in different forms during last decade open ways for practical applications of these materials. Here we report the first results of experiments aiming at development of composites consisting of nanographite powders and polymeric matrixes showing the possibility to fabricate low-cost flexible conducive composites based on highly abundant natural products with variety of potential applications in particular for flexible heaters.34. Symposium on Microelectronics Technology and Device
Synthesis Of Carbon Nanotubes Directly Over Tem Grids Aiming The Study Of Nucleation And Growth Mechanisms
A novel approach to produce electron-transparent multi-layer membranes over TEM grids for transmission electron microscopy analysis is presented. The membranes have been used to grow and analyze carbon nanostructured materials in a thermal-chemical vapor deposition process using Ni and Cu as catalysts and silicon oxide thin films as support layers, at temperatures as high as 900 °C. It is important that conditions of the synthesis using the electron-transparent multi-layer membrane system are similar to those for a conventional chemical vapor deposition process, where oxidized silicon wafers are employed. In particular, the thickness of the silicon oxide and the catalyst layers are the same, and similar carbon tubular structures were grown using both substrates. The use of membranes was crucial especially for the study of the nucleation mechanism for carbon nanotubes. These electron-transparent multi-layer membranes are relatively easy to obtain and they can be used for transmission electron microscopy studies of high-temperature synthesis of different nanostructured materials. © 2008 Elsevier B.V. All rights reserved.2541338903895Baker, R.T.K., Barber, M.A., Harris, P.S., Feats, F.S., Waite, R.J., (1972) J. Catal., 26, p. 51Baker, R.T.K., (1989) Carbon, 27, p. 315Sinnott, S.B., Andrews, R., Qian, D., Rao, A.M., Mao, Z., Dickey, E.C., Derbyshire, F., (1999) Chem. Phys. Lett., 315, p. 25Moshkalev, S.A., Verissimo, C., (2007) J. Appl. Phys., 102, p. 044303Ijima, S., (1991) Nature, 354, p. 56Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F., Norskov, J.K., (2004) Nature, 427, p. 426Sharma, R., Rez, P., Brown, M., Du, G., Treacy, M.M.J., (2007) Nanotechnology, 18, p. 125602Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Robertson, R., (2007) Nano Lett., 7, p. 602Enquist, F., Spetz, A., (1986) Thin Solid Films, 145, p. 99Jacobs, J.W.M., Verhoeven, J.F.C.M., (1986) J. Microsc., 143, p. 103Philipp, G., Weimann, T., Hinze, P., Burghard, M., Weis, J., (1999) Microelectron. Eng., 46, p. 157Chopra, N., Xu, W., Long, L.E.D., Hinds, B.J., (2005) Nanotech., 16, p. 133Gu, G., Philipp, G., Wu, X., Burghard, M., Bittner, A.M., Roth, S., (2001) Adv. Funct. Mater., 11, p. 295Nerushev, O.A., Dittmar, S., Morjan, R.-E., Rohmund, F., Campbell, E.E.B., (2003) J. Appl. Phys., 93, p. 4185Grant, A.W., Hu, Q.-H., Kasemo, B., (2004) Nanotechnology, 15, p. 1175Yao, B., Petrova, R.V., Vanfleet, R.R., Coffey, K.R., (2006) J. Electron. Microsc., 55, p. 209Moshkalyov, S.A., Moreau, A.L.D., Guttiérrez, H.R., Cotta, M.A., Swart, J.W., (2004) Mater. Sci. Eng. B, 112, p. 147VerÃssimo, C., Moshkalyov, S.A., Ramos, A.C.S., Gonçalves, J.L., Alves, O.L., Swart, J.W., (2006) J. Braz. Chem. Soc., 17, p. 1124Athalin, H., Lefrant, S., (2005) J. Raman Spectrosc., 36, p. 400DiLeo, R.A., Landi, B.J., Raffaelle, R.P., (2007) J. Appl. Phys., 101, p. 064307Gorbunov, A., Jost, O., Pompe, W., Graff, A., (2002) Appl. Surf. Sci., 563, p. 197Moisala, A., Nasibulin, A.G., Kauppinen, E.I., (2003) J. Phys.-Condens. Matter., 15, pp. S3011Louchev, O.A., Laude, T., Sato, Y., Kanda, H.J., (2003) J. Chem. Phys., 118, p. 762
Plasma Etching Of Polycrystalline Silicon Using Thinning Technology For Application In Cmos And Mems Technologies
This work presents results of the study of profile evolution for Si-poly structures during plasma etching using the thinning technology in SF6/CF4/CHF3 gas mixtures. Structures with an aspect ratio (height/width) up to 5, widths end in the range of 0.3 - 0.1 μm and 0.3μm thick, were produced. Sipoly structures with high anisotropy (anisotropy factor up to 0.92-0.98) after etching were demostrated. The method can be used for fabrication of sub-micron Si-poly gates in CMOS and in fabrication of MEMS devices.227480Oehrlein, G.S., Doemling, M.F., Kastenmeier, B.E.E., Matsuo, P.J., Rueger, N.R., Schaepkens, M., Standaert, T.E.F.M., (1999) IBM J. Research and Development, 43 (1-2), pp. 181-196Song, Y.S., Kim, J.W., Chung, C.W., (2004) Thin Solid Films, 467, pp. 172-175Laermer, F., Urban, A., (2003) Microelectron. Eng, 67-68, pp. 349-355Nunes, A.M., Tatsch, P.J., Moshkalyov, S.A., Daltrini, A.M., Machida, M., (2005) Proceedings of the 8° Encontro Brasileiro de Fisica dos Plasmas, , Niteroi-RJTuda, M., Shintani, K., Tanimura, J., (2003) Plasma Sources Sci. Technol, 12, pp. S72-S79Braithwaite, N.S.J., Matsuura, T., (2004) Contrib. Plasma Phys, 44 (5-6), pp. 478-484Tserepi, A., Gogolides, E., Cardinaud, C., Rolland, L., Turban, G., (1998) Microelectron. Eng, 411 (41-42), pp. 411-414Foucher, J., Cunge, G., Vallier, L., Joubert, O., (2002) Microelectron. Eng, 61-62, pp. 849-857Kern, RCA Review, 31, 187, 1970Teixeira, R.C., Doi, I., Zakia, M.B.P., Diniz, J.A., Swart, J.W., (2005) Mat. Sci. Eng. B, 124-125, pp. 138-142Dreeskornfeld, L., Hartwich, J., Kretz, J., Risch, L., Roesner, W., Schmitt-Landsiedel, D., (2002) J.Vac.Sci.Technol. B, 20 (6), pp. 2777-277
Formation Of Catalyst Nanoparticles And Nucleation Of Carbon Nanotubes In Chemical Vapor Deposition
Multi-walled carbon nanotubes and other carbon nanostructures have been grown using catalytic thermal chemical vapor deposition method in a horizontal tubular quartz furnace at atmospheric pressure. The mechanisms of nanotubes/nanofibers nucleation and growth are analyzed. A new model explaining the nanotube nucleation as a specific instability occurring on the catalyst particle surface supersaturated with carbon is presented. It is also shown that an axially symmetric instability, giving rise to the nanotube nucleation, is developed when certain critical conditions such as temperature, supersaturation and catalyst volume are achieved. For smaller temperatures, another mechanism of carbon segregation from supersaturated catalyst particles has been observed. In this case, flat rather than tubular graphitic layers are formed. These findings are important for better understanding and control of the synthesis of different carbon nanoforms using chemical vapor deposition. Copyright © 2009 American Scientific Publishers All rights reserved.9744594466Dupuis, A.-C., (2005) Prog. Mat. Sci., 50, p. 929Moisala, A., Nasibulin, A.G., Kauppinen, E.I., (2003) J. Phys.: Condens. Matter., 15, pp. S3011Harris, P.J.F., (2007) Carbon, 45, p. 229Tibbetts, G.G., (1984) J. Cryst. Growth, 66, p. 632Moshkalyov, S.A., Moreau, A., Guttiérrez, H., Cotta, M.A., Swart, J.W., (2004) Mater. Sci. Eng. B, 112, p. 147Seidel, R., Duesberg, G.S., Unger, E., Graham, A.P., Liebau, M., Kreupl, F., (1888) J. Phys. Chem. B, 108, p. 2004Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Milne, W.I., (2001) J. Appl. Phys., 90, p. 5308Wright, A.C., Xiong, Y., Maung, N., Eichhorn, S.J., Young, R.J., (2003) J. Mater. Sci. Eng. C, 23, p. 279Wal, R.L.V., Ticich, T.M., Curtis, V.E., (2001) Carbon, 39, p. 2277Arcos Los T.De, Garnier, M.G., Oelhafen, P., Mathys, D., Seo, J.W., Domingo, C., Garcia-Ramos, J.V., Sánchez-Cortés, S., (2004) Carbon, 42, p. 187Aguiar, M.R., Verissimo, C., Ramos, A.C.S., Moshkalev, S.A., Swart, J.W., (2008) J. Nanosci. Nanotechnol., , to be publishedKukovitsky, E.F., L'Vov, S.G., Sainov, N.A., Shustov, V.A., Chernozatonskii, L.A., (2002) Chem. Phys. Lett., 355, p. 497Harutyunyan, A.R., Tokune, T., Mora, E., Yoo, J.-W., Epstein, A.J., (2006) J. Appl. Phys., 100, p. 044321Moshkalev, S.A., Verissimo, C., (2007) J. Appl. Phys., 102, p. 044303Ding, F., Rosén, A., Bolton, K., (2004) Chem. Phys. Lett., 393, p. 309Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., (1996) Chem. Phys. Lett., 260, p. 471Baker, R.T.K., (1989) Carbon, 27, p. 315Mullins, W.W., Sekerka, R.F., (1963) J. Appl. Phys., 34, p. 323Nasibulin, A.G., Queipo, P., Shandakov, S.D., Brown, D.P., Jiang, H., Pikhitsa, P.V., Tolochko, O.V., Kauppinen, E.I., (2006) J. Nanosci. Nanotechnol., 6, p. 1Verissimo, C., Gobbi, A.L., Moshkalev, S.A., (2008) Appl. Surf. Sci., 254, p. 3890Bartsch, K., Biedermann, K., Gemming, T., Leonhardt, A.J., (2005) J. Appl. Phys., 97, p. 114301Ding, F., Bolton, K., (2006) Nanotechnology, 17, p. 543Zhang, Z.M., (2007) Nano/Microscale Heat Transfer, , McGrow Hill, New Yor
Plasma Parameters Obtained With Planar Probe And Optical Emission Spectroscopy
A planar probe and optical emission spectroscopy were employed to analyze parameters in an inductively coupled plasma (ICP).The analyses were performed in Ar, Ar+SF6 and O2 plasmas at 40 mTorr. Typical probe results indicate an ion current of 10-3 A/cm2 and an electron temperature (high energy tail) between 1-2 eV in measurements at high powers. At low powers a distinct discharge regime is observed, typically with low density (low ion current) and high electron temperature. The optical emission studies also showed the presence of these two regimes. Moreover, The electron temperature determination using this diagnostic is also in good agreement with planar probe results.226773Huddlestone, R.H., Leonard, S.L., (1965) Plasma Diagnostic Techniques, pp. 113-200. , Academic Press, New YorkSudit, I.D., Chen, F.F., RF compensated probes for high-density discharges (1994) Plasma Sources Sci. Technol, 3 (2), pp. 162-168. , MayLaframboise, J.G., Theory of spherical and cylindrical Langmuir probes in a collisionless plasma at rest (1966) Univ. Toronto Inst. Aerospace Studies Rept, 100. , JuneBraithwaite, N.S.J., Booth, J.P., Cunge, G., A novel electrostatic probe method for ion flux measurements (1996) Plasma Sources Sci. Technol, 5 (4), pp. 677-684. , NovemberCzerwiec, T., Graves, D.B., Mode transitions in low pressure, rare gas cylindrical ICP discharge studied by optical emission spectroscopy (2004) J. Phys. D: Appl. Phys, 37 (20), pp. 2827-2840. , OctoberLieberman, M.A., Lichtenberg, A.J., (1994) Principles of Plasma Discharges and Materials Processing, pp. 81-308. , John Wiley and Sons, New YorkChapman, B., (1980) Glow Discharge Processes, pp. 49-76. , John Wiley and Sons, New YorkSwart, L., Verdonck, P., Determination of the ion density and electron temperature using a planar electrostatic probe (2005) The Electrochemical Society Proceedings Series - PV, 2005 -08, pp. 254-262. , Microelectronics Technology and Devices, SBMicro2005Boffard, J.B., Lin, C.C., DeJoseph Jr, C.A., Application of excitation cross sections to optical plasma diagnostics (2004) J. Phys. D: Appl. Phys, 37 (12), pp. R143-R161. , JuneFrancis, A., Czarnetzki, U., Döbele, H.F., Sadeghi, N., Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules (1997) Appl. Phys. Lett, 71 (26), pp. 3796-3798. , DecemberDaltrini, A.M., Moshkalev, S.A., Monteiro, M.J.R., Besseler, E., Kostryukov, A., Machida, M., Made transitions and hysteresis in inductively coupled plasmas (2007) J. Appl. Phys, 101 (7), p. 073309. , Apri
Ni-p, Ni-b And Sio2 As Materials For Hard Mask In Deep Silicon Etching For Mems Fabrication Using Icp Reactor
Ni-P, Ni-B and SiO2 films were used as hard mask materials in Si etching using a high-density inductively coupled plasma (ICP) reactor for MEMS fabrication. The Ni-P and Ni-B films were deposited using an electroless method, and the SiO2 film was thermally grown in a conventional furnace. Two etching processes were used to characterize the masks. The first uses SF 6/Ar gas mixture varying bias power and process time, and the second is a Bosch like process, using C4F8 as a passivation gas. The Ni-P mask showed the highest resistance to etching, being applicable in Si deep etching (>100μm); while the SiO2 mask was found to be less resistive, especially under strong ion bombardment (high bias power). The Ni-B mask was found to be highly porous, resulting in formation of micropillars during ecthing, which may be interesting for some apllications such as sensors. © The Electrochemical Society.231173180Rhee, H., Kwon, H., Kim, C.-K., Kim, H., Yoo, J., Kim, Y.W., (2008) J. Vac. Sci. Technol. B, 26 (2), p. 576Kok, K.W., Yoo, W.J., Sooriakumar, K., Pan, J.S., Lee, E.Y., (2002) J. Vac. Sci. Technol. B, 20 (5), p. 1878Darnon, M., Chevolleau, T., Eon, D., Bouyssou, R., Pelissier, B., Vallier, L., Joubert, O., Torres, J., (2008) Microelectronic Enginnering, 85, p. 2226Ceriotti, L., Weible, K., De Rooij, N.F., Verpoorte, E., (2003) Microelectronic Engineering, 67-68, p. 865Tanaka, S., Rajanna, K., Abe, T., Esashi, M., (2001) J. Vac. Sci. Technol. B, 19 (6), p. 2173Nunes, A.M., Moshkalev, S.A., Flacker, A., Tatsch, P.J., Besseler, E., (2008) ECS Transactions, 14 (1), p. 403Zou, Y.S., Yang, Y., Zhang, W.J., Chong, Y.M., He, B., Bello, I., Lee, T., (2008) Applied Physics Letters, 92, p. 053105Kim, M.J., Lee, J.S., Kim, S.K., Yeom, G.Y., Yoo, J.-B., Park, C.-Y., (2005) Thin Solid Films, 475, p. 4
Electrical Characterization Of Platinum Thin Films Deposited By Focused Ion Beam
Dual beam FIB (focused ion beam)/SEM (scanning elelctron microscope) systems are commonly used for imaging, selective etch and deposition of materials like platinum. The paper presents the results of electrical characterization of platinum thin films deposited by focused ion beam. For measurements, two types of test structures were fabricated: (i) 150×150 μm and 20×20 μm squares with thickness of 5, 10, 30 and 100 nm, and (ii) 30 μm long resistors with variable cross - section (50 nm × 50nm to 1 μm × 1μm). The Pt film resistivity has been measured by a four points probe method, to give the value of ∼10 × 10 -4 Ω.cm. © The Electrochemical Society.91235241Selinger, R.L., Fleming, W.P., (1974) Journal of Applied Physics, 45, pp. 1416-1422Go, M.S.H., Focused ion beam fabrication of junctions in the charge density wave conductor NbSe, (2001), M.S. thesis, Delft Univ. of Technol, Delft, The NetherlandsTao, T., Ro, J.S., Melngailis, J., Xue, Z., Kaesz, H.D., (1990) J. Vac. Sci. Technol, B 8 (6), pp. 1826-1829van der Pauw, L.J., (1958) Phillips Res. Rep, 13, pp. 1-9Tay, M., Li, K., Wu, Y., (2005) J. Vac. Sci. Technol, B 8 (23 4), pp. 1412-1416Kanagawa, T., Hobara, R., Matsuda, I., Tanikawa, T., Natori, A., Hasegawa, S., (2003) Physical Review Letters, 91 (3)Smith, S., Walton, A.J., Bond, S., Ross, A.W.S., Stevenson, J.T.M., Gundlach, A.M., (2003) IEEE Transactions on Semiconductor Manufacturing, 16 (2), pp. 199-206Ko, D., Park, Y.M., Kim, S., Kim, Y., (2007) Ultramicroscopy, 107, pp. 368-373Salvadori, M.C., Vaz, A.R., Farias, R.J.C., Cattani, M., (2004) Surface Review and Letters, 11 (2), pp. 223-22
The Influence Of Substrates On The Carbon Nanotube Growth Process
Carbon nanotubes (CNTs) have attracted much attention due to their extraordinary properties. This nanostructured material has been synthesized by various methods and the chemical vapor deposition (CVD) has been shown to be an efficient and versatile technique. In this work, catalytic thermal CVD method, using a mixture of methane and hydrogen at atmospheric pressure on a horizontal tubular quartz furnace, was used to grow carbon nanotubes. Silicon wafers with SiO 2 or Al 2O 3 layers were used as substrates whereas thin nickel film was deposited over the substrates and used as catalyst. The interaction between catalyst nickel film and two different oxide layers supported on silicon wafers was studied as well as the influence of both substrates (Si/SiO 2 and Si/Al 2O 3) on the carbon nanotube growth. It was observed a completely different interaction between Ni film and both oxide layers, affecting strongly the growth of CNTs. © The Electrochemical Society.91219225Hart, A.J., Boskovic, B.O., Chuang, A.T.H., Golovko, V.B., Robertson, J., Johnson, B.F.G., Slocum, A.H., (2006) Nanotechnol, 17, p. 1397Park, C., Keane, M.A., (2004) J. Catal, 221, p. 386Wal, R.L.V., Ticich, T.M., Curtis, V.E., (2001) Carbon, 39, p. 2277Ago, H., Nakamura, K., Uehara, N., Tsuji, M., (2004) J. Phys. Chem. B, 108, p. 18908Li, X., Zhang, Y., Smith, K.J., (2004) Appl. Cat. A: General, 264, p. 81Takenaka, S., Kato, E., Tomikubo, Y., Otsuka, K., (2003) J. Catal, 219, p. 176T. de los Arcos, M. G. Garnier, P. Oelhafen, D. Mathys, J. W. Seo, C. Domingo, J. V. Garcia-Ramos and S. Sánchez-Cortés, Carbon, 42, 187 (2004)Hart, A.J., Slocum, A.H., Royer, L., (2006) Carbon, 44, p. 348Balbuena, P.B., Zhao, J., Huang, S., Wang, Y., Sakulchaicharoen, N., Resasco, D.E., (2006) J. Nanosci. Nanotechnol, 6, p. 1247Cao, A., Ajayan, P.M., Ramanath, G., Baskaran, R., Turner, K., (2004) App. Phys. Lett, 84, p. 109Ward, J.W., Wei, B.Q., Ajayan, P.M., (2003) Chem. Phys. Lett, 376, p. 111T. de los Arcos, M. G. Garnier, J. W. Seo, P. Oelhafen, V. Tomen and D. Mathys, J. Phys. Chem. B, 108, 7728 (2004)Olszówka-Myalska, A., (2002) Mikrochim.Acta, 139, p. 119Bartsch, K., Biedermann, K., Gemming, T., Leonhardt, A.J., (2005) J. Appl. Phys, 97, p. 114301Dupuis, A.-C., (2005) Prog. Mat. Sci, 50, p. 929Ermakova, M.A., Ermakov, D.Y., Plyasova, L.M., Kuvshinov, G.G., (1999) Catal. Lett, 62, p. 93J. D. R. Buchanan, T. P. A. Hase, B. K. Tanner, P. J. Chen, L. Gan J. Powell and W. F. Egelhof, Jr., J.Appl.Phys., 93, 8044 (2003)Yao, Y., Falk, L.K.L., Morjan, R.E., Nerushev, O.A., Campbell, E.E.B., (2004) J. Mater. Sci.: Mater. Electron, 15, p. 53
Gaas And Algaas Reactive Ion Etching In Sicl4/ar Gas Mixtures For Hemt Applications
This work presents the AlGaAs and GaAs etching results using a RIE reactor and SiCl4/Ar plasma. These materials can be applied in HEMT devices fabrication. The influence of the process temperature on etch rates has been studied. Selectivity of etching and the importance of the periodical process chamber cleaning for SiCl4 containing gas mixtures are discussed. For optimized conditions, GaAs etch rate as high as ∼50nm/min with low surface roughness, for process duration as long as 60 min, have been obtained. © The Electrochemical Society.91169177Lee, J.W., Jeon, M.H., Cho, G.S., Yim, H.C., Chang, S.K., Kim, K.K., Devre, M., Pearton, S.J., Development of advanced plasma process with an optical emission spectroscopy-based end-point technique for etching of AlGaAs over GaAs in manufacture of heterojunction bipolar transistors (2002) Solid-State Electronics, 46, pp. 773-775Lee, J.W., Jeon, M.H., Devre, M., Mackenzie, K.D., Johnson, D., Sasserath, J.N., Pearton, S.J., Shul, R.J., Understanding of etch mechanism and etch depth distibution in inductively coupled plasma etching of GaAs (2001) Solid-State Electronics, 45, pp. 1683-1686Mestanza, S.N.M., Frateschi, N.C., Electron cyclotron plasma etching damage investigated by InGaAs/GaAs quantum well photoluminescence (2006) J. Vac. Sci. Technol. B, 24 (6), pp. 2726-2730Giehl, A.R., Gumbel, M., Kessler, M., Herhammer, N., Hoffmann, G., Fouckhardt, H., Deep dry etching of GaAs and GaSb using Cl2/Ar plasma discharges (2003) J. Vac. Sci. Technol. B, 21 (6), pp. 2393-2397Dultsev, F.N., Nenasheva, L.A., The effect of hydrogen as an additive in reactive ion etching of GaAs for obtaining polished surface (2006) Appl. Surf. Sci, 253, pp. 1287-1290Choquette, K.D., Shul, R.J., Howard, A.J., Rieger, D.J., Smooth reactive ion etching of GaAs using a hydrogen plasma pretreatment (1995) J. Vac. Sci. Technol. B, 13 (1), pp. 40-4