11 research outputs found

    Quantitative multiplex immunohistochemistry reveals inter-patient lymphovascular and immune heterogeneity in primary cutaneous melanoma

    Get PDF
    IntroductionQuantitative, multiplexed imaging is revealing complex spatial relationships between phenotypically diverse tumor infiltrating leukocyte populations and their prognostic implications. The underlying mechanisms and tissue structures that determine leukocyte distribution within and around tumor nests, however, remain poorly understood. While presumed players in metastatic dissemination, new preclinical data demonstrates that blood and lymphatic vessels (lymphovasculature) also dictate leukocyte trafficking within tumor microenvironments and thereby impact anti-tumor immunity. Here we interrogate these relationships in primary human cutaneous melanoma. MethodsWe established a quantitative, multiplexed imaging platform to simultaneously detect immune infiltrates and tumor-associated vessels in formalin-fixed paraffin embedded patient samples. We performed a discovery, retrospective analysis of 28 treatment-naïve, primary cutaneous melanomas. ResultsHere we find that the lymphvasculature and immune infiltrate is heterogenous across patients in treatment naïve, primary melanoma. We categorized five lymphovascular subtypes that differ by functionality and morphology and mapped their localization in and around primary tumors. Interestingly, the localization of specific vessel subtypes, but not overall vessel density, significantly associated with the presence of lymphoid aggregates, regional progression, and intratumoral T cell infiltrates. DiscussionWe describe a quantitative platform to enable simultaneous lymphovascular and immune infiltrate analysis and map their spatial relationships in primary melanoma. Our data indicate that tumor-associated vessels exist in different states and that their localization may determine potential for metastasis or immune infiltration. This platform will support future efforts to map tumor-associated lymphovascular evolution across stage, assess its prognostic value, and stratify patients for adjuvant therapy

    Genomic and Transcriptomic Underpinnings of Melanoma Genesis, Progression, and Metastasis

    No full text
    Melanoma is a deadly skin cancer with rapidly increasing incidence worldwide. The discovery of the genetic drivers of melanomagenesis in the last decade has led the World Health Organization to reclassify melanoma subtypes by their molecular pathways rather than traditional clinical and histopathologic features. Despite this significant advance, the genomic and transcriptomic drivers of metastatic progression are less well characterized. This review describes the known molecular pathways of cutaneous and uveal melanoma progression, highlights recently identified pathways and mediators of metastasis, and touches on the influence of the tumor microenvironment on metastatic progression and treatment resistance. While targeted therapies and immune checkpoint blockade have significantly aided in the treatment of advanced disease, acquired drug resistance remains an unfortunately common problem, and there is still a great need to identify potential prognostic markers and novel therapeutic targets to aid in such cases

    Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma

    No full text
    Non-melanoma skin cancers are cutaneous malignancies representing the most common form of cancer in the United States. They are comprised predominantly of basal cell carcinomas and squamous cell carcinomas (cSCC). The incidence of cSCC is increasing, resulting in substantial morbidity and ever higher treatment costs; currently in excess of one billion dollars, per annum. Here, we review research defining the molecular basis and development of cSCC that aims to provide new insights into pathogenesis and drive the development of novel, cost and morbidity saving therapies

    Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma

    No full text
    Non-melanoma skin cancers are cutaneous malignancies representing the most common form of cancer in the United States. They are comprised predominantly of basal cell carcinomas and squamous cell carcinomas (cSCC). The incidence of cSCC is increasing, resulting in substantial morbidity and ever higher treatment costs; currently in excess of one billion dollars, per annum. Here, we review research defining the molecular basis and development of cSCC that aims to provide new insights into pathogenesis and drive the development of novel, cost and morbidity saving therapies

    Neoantigen-specific CD4 + T cells in human melanoma have diverse differentiation states and correlate with CD8 + T cell, macrophage, and B cell function

    No full text
    CD4+ T cells that recognize tumor antigens are required for immune checkpoint inhibitor efficacy in murine models, but their contributions in human cancer are unclear. We used single-cell RNA sequencing and T cell receptor sequences to identify signatures and functional correlates of tumor-specific CD4+ T cells infiltrating human melanoma. Conventional CD4+ T cells that recognize tumor neoantigens express CXCL13 and are subdivided into clusters expressing memory and T follicular helper markers, and those expressing cytolytic markers, inhibitory receptors, and IFN-γ. The frequency of CXCL13+ CD4+ T cells in the tumor correlated with the transcriptional states of CD8+ T cells and macrophages, maturation of B cells, and patient survival. Similar correlations were observed in a breast cancer cohort. These results identify phenotypes and functional correlates of tumor-specific CD4+ T cells in melanoma and suggest the possibility of using such cells to modify the tumor microenvironment
    corecore