254 research outputs found

    Factor XIII A-Subunit V34L Variant Affects Thrombus Cross-Linking in a Murine Model of Thrombosis

    Get PDF
    Objective-Factor XIII (FXIII) cross-links fibrin upon activation by thrombin. Activation involves cleavage at residue 37 by thrombin, releasing an activation peptide. A common polymorphism (valine to leucine variant at residue 34, V34L), located in the activation peptide, has been associated with increased activation rates and paradoxically a protective effect in cardiovascular disease. There is, currently, no data available on the effects of V34L from in vivo models of thrombosis. We examined the effect of FXIII V34L on clot formation and cross-linking in vivo. Approach and Results-We generated a panel of full-length recombinant human FXIII-A2 variants with amino acid substitutions in the activation peptide to investigate the effect of these variants on activation rate, and we used wild-type, V34L, and alanine to glycine variant at residue 33 variants to study the effects of varying FXIII activation rate on thrombus formation in a murine model of FeCl3 injury. FXIII activation assay showed that residues 29, 30, 33, and 34 play a critical role in thrombin interaction. Full-length recombinant human FXIII-A2 V34L has significant effects on clot formation, structure, and lysis in vitro, using turbidity assay. This variant influenced fibrin cross-linking but not size of the thrombus in vivo. Conclusions-Mutations in the activation peptide of full-length recombinant FXIII regulate activation rates by thrombin, and V34L influences in vivo thrombus formation by increased cross-linking of the clot

    IGD Motifs, Which Are Required for Migration Stimulatory Activity of Fibronectin Type I Modules, Do Not Mediate Binding in Matrix Assembly

    Get PDF
    Picomolar concentrations of proteins comprising only the N-terminal 70-kDa region (70K) of fibronectin (FN) stimulate cell migration into collagen gels. The Ile-Gly-Asp (IGD) motifs in four of the nine FN type 1 (FNI) modules in 70K are important for such migratory stimulating activity. The 70K region mediates binding of nanomolar concentrations of intact FN to cell-surface sites where FN is assembled. Using baculovirus, we expressed wildtype 70K and 70K with Ile-to-Ala mutations in 3FNI and 5FNI; 7FNI and 9FNI; or 3FNI, 5FNI, 7FNI, and 9FNI. Wildtype 70K and 70K with Ile-to-Ala mutations were equally active in binding to assembly sites of FN-null fibroblasts. This finding indicates that IGD motifs do not mediate the interaction between 70K and the cell-surface that is important for FN assembly. Further, FN fragment N-3FNIII, which does not stimulate migration, binds to assembly sites on FN-null fibroblast. The Ile-to-Ala mutations had effects on the structure of FNI modules as evidenced by decreases in abilities of 70K with Ile-to-Ala mutations to bind to monoclonal antibody 5C3, which recognizes an epitope in 9FNI, or to bind to FUD, a polypeptide based on the F1 adhesin of Streptococcus pyogenes that interacts with 70K by the β-zipper mechanism. These results suggest that the picomolar interactions of 70K with cells that stimulate cell migration require different conformations of FNI modules than the nanomolar interactions required for assembly

    Canal wall reconstruction and mastoid obliteration with composite multi-fractured osteoperiosteal flap

    Get PDF
    We used inferior pedicled composite multi-fractured osteoperiosteal flap (CMOF), our original and new surgical approach, to obliterate the mastoid cavity and reconstruct the external auditory canal (EAC) to prevent the open cavity problems. CMOF was used to obliterate the mastoid cavity and reconstruct the EAC in 24 patients (13 women, 11 men; age span 12–51 years) who underwent radical mastoidectomy to treat the chronic otitis media between 1998 and 2004. Small meatoplasty was done in all 24 patients to relive their aesthetical concerns. Temporal bone CT scanning was done to observe the neo-osteogenesis in the mastoidectomy cavity and the CMOF, and the EAC volume was measured postoperatively. All our patients were followed-up for 2 years. The epithelization of the new EAC in our patients was complete at the end of the second month. Cholesteatoma, granulation, and recurrence of osteitis did not occur in any of the patients. We saw the new bone formation filling the mastoid cavity in the postoperative temporal bone CT scanning images. The mean volume of the new EAC on the 24th month was 1.83 ± 0.56 cm(3). We had an almost natural EAC, which owed its existence to the neo-osteogenesis that grows behind the CMOF, which we use to obliterate the mastoid cavity and to reconstruct the EAC

    Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds

    Get PDF
    We analyzed the distribution of fibronectin in routinely embedded tissue specimens from 53 skin wounds and 6 postmortem wounds. In postmortem wounds a faint but focal positive staining was exclusively found at the margin of the specimens which dit not extend into the adjacent stroma. Vital wounds were classified into 3 groups. The first comprising lesions with wound ages ranging from a few seconds to 30 min, the second comprising those with wound ages upt to 3 weeks, and the third group with lesions more than 3 weeks old. Ten out of 17 lesions with a wound age up to 30 min showed a clear positive reaction within the wound area. Three specimens in this group were completely negative, while in 4 additional cases the result was not significantly different from postmortem lesions. These 7 cases were characterized by acute death with extremely short survival times (only seconds). In wounds up to 3 weeks old fibronectin formed a distinct network containing an increasing number of inflammatory cells corresponding to the wound age. In 2 cases with a survival time of 17 days and in all wounds older than 3 weeks fibronectin was restricted to the surface of fibroblasts and to parallel arranged fibers in the granulation tissue without any network structures. We present evidence that fibronectin is a useful marker for vital wounds with a survival time of more than a few minutes. Fibronectin appears before neutrophilic granulocytes migrate into the wound area. Since a faint positive fibronectin staining is seen in postmortem lesions and bleedings, we propose that only those wounds which show strong positive fibronectin staining also extending into the adjacent stroma should be regarded as vital

    Modification of EGF-Like Module 1 of Thrombospondin-1, an Animal Extracellular Protein, by O-Linked N-Acetylglucosamine

    Get PDF
    Thrombospondin-1 (TSP-1) is known to be subject to three unusual carbohydrate modifications: C-mannosylation, O-fucosylation, and O-glucosylation. We now describe a fourth: O-β-N-acetylglucosaminylation. Previously, O-β-N-acetylglucosamine (O-β-GlcNAc) was found on a threonine in the loop between the fifth and sixth cysteines of the 20th epidermal growth factor (EGF)-like module of Drosophila Notch. A BLAST search based on the Drosophila Notch loop sequence identified a number of human EGF-like modules that contain a similar sequence, including EGF-like module 1 of TSP-1 and its homolog, TSP-2. TSP-1, which has a potentially modifiable serine in the loop, reacted in immuno-blots with the CTD110.6 anti-O-GlcNAc antibody. Antibody reactivity was diminished by treatment of TSP-1 with β-N-acetylhexosaminidase. TSP-2, which lacks a potentially modifiable serine/threonine in the loop, did not react with CTD110.6. Analysis of tandem modules of TSP-1 localized reactivity of CTD110.6 to EGF-like module 1. Top-down mass spectrometric analysis of EGF-like module 1 demonstrated the expected modifications with glucose (+162 Da) and xylose (+132 Da) separately from modification with N-acetyl hexosamine (+203 Da). Mass spectrometric sequence analysis localized the +203-Da modification to Ser580 in the sequence 575CPPGYSGNGIQC586. These results demonstrate that O-β-N-acetylglucosaminylation can occur on secreted extracellular matrix proteins as well as on cell surface proteins

    Display of Cell Surface Sites for Fibronectin Assembly Is Modulated by Cell Adherence to 1F3 and C-Terminal Modules of Fibronectin

    Get PDF
    BACKGROUND: Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7)F3-(10)F3). Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7)F3-(10)F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS: To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7)F3-(10)F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2)F3-(14)F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1)F3 or the C-terminal modules to modules (2)F3-(14)F3 resulted in some activity, and addition of both (1)F3 and the C-terminal modules resulted in a construct, (1)F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1)F3-C V0, (1)F3-C V64, and (1)F3-C Delta(V(15)F3(10)F1) were all able to support fibronectin assembly, suggesting that (1)F3 through (11)F1 and/or (12)F1 were important for activity. Coatings in which the active parts of (1)F3-C were present in different proteins were much less active than intact (1)F3-C. CONCLUSIONS: These results suggest that (1)F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells

    A Novel Fibronectin Binding Motif in MSCRAMMs Targets F3 Modules

    Get PDF
    BBK32 is a surface expressed lipoprotein and fibronectin (Fn)-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM) of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21-205 of the lipoprotein.Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn) inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence.We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities

    Androgenic dependence of exophytic tumor growth in a transgenic mouse model of bladder cancer: a role for thrombospondin-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC) in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone. Castration reduces incidence of chemically-induced BC in rodents. It is unclear if this effect is due to hormonal influences on activation/deactivation of carcinogens or a direct effect on urothelial cell proliferation or other malignant processes. We examined the effect of castration on BC growth in UPII-SV40T transgenic mice, which express SV40 T antigen specifically in urothelium and reliably develop BC. Furthermore, because BC growth in UPII-SV40T mice is exophytic, we speculated BC growth was dependent on angiogenesis and angiogenesis was, in turn, androgen responsive.</p> <p>Methods</p> <p>Flat panel detector-based cone beam computed tomography (FPDCT) was used to longitudinally measure exophytic BC growth in UPII-SV40T male mice sham-operated, castrated, or castrated and supplemented with dihydrotestosterone (DHT). Human normal bladder and BC biopsies and mouse bladder were examined quantitatively for thrombospondin-1 (TSP1) protein expression.</p> <p>Results</p> <p>Mice castrated at 24 weeks of age had decreased BC volumes at 32 weeks compared to intact mice (p = 0.0071) and castrated mice administered DHT (p = 0.0233; one-way ANOVA, JMP 6.0.3, SAS Institute, Inc.). Bladder cancer cell lines responded to DHT treatment with increased proliferation, regardless of androgen receptor expression levels. TSP1, an anti-angiogenic factor whose expression is inhibited by androgens, had decreased expression in bladders of UPII-SV40T mice compared to wild-type. Castration increased TSP1 levels in UPII-SV40T mice compared to intact mice. TSP1 protein expression was higher in 8 of 10 human bladder biopsies of normal versus malignant tissue from the same patients.</p> <p>Conclusion</p> <p>FPDCT allows longitudinal monitoring of exophytic tumor growth in the UPII-SV40T model of BC that bypasses need for chemical carcinogens, which confound analysis of androgen effects. Androgens increase tumor cell growth <it>in vitro </it>and <it>in vivo </it>and decrease TSP1 expression, possibly explaining the therapeutic effect of castration. This effect may, in part, explain gender differences in BC incidence and implies anti-androgenic therapies may be effective in preventing and treating BC.</p

    Complement in the pathogenesis of Alzheimer's disease

    Get PDF
    The emergence of complement as an important player in normal brain development and pathological remodelling has come as a major surprise to most scientists working in neuroscience and almost all those working in complement. That a system, evolved to protect the host against infection, should have these unanticipated roles has forced a rethink about what complement might be doing in the brain in health and disease, where it is coming from, and whether we can, or indeed should, manipulate complement in the brain to improve function or restore homeostasis. Complement has been implicated in diverse neurological and neuropsychiatric diseases well reviewed elsewhere, from depression through epilepsy to demyelination and dementia, in most complement drives inflammation to exacerbate the disease. Here, I will focus on just one disease, the most common cause of dementia, Alzheimer’s disease. I will briefly review the current understanding of what complement does in the normal brain, noting, in particular, the many gaps in understanding, then describe how complement may influence the genesis and progression of pathology in Alzheimer’s disease. Finally, I will discuss the problems and pitfalls of therapeutic inhibition of complement in the Alzheimer brain
    corecore