1,574 research outputs found
Comparator automata in quantitative verification
The notion of comparison between system runs is fundamental in formal
verification. This concept is implicitly present in the verification of
qualitative systems, and is more pronounced in the verification of quantitative
systems. In this work, we identify a novel mode of comparison in quantitative
systems: the online comparison of the aggregate values of two sequences of
quantitative weights. This notion is embodied by {\em comparator automata}
({\em comparators}, in short), a new class of automata that read two infinite
sequences of weights synchronously and relate their aggregate values.
We show that {aggregate functions} that can be represented with B\"uchi
automaton result in comparators that are finite-state and accept by the B\"uchi
condition as well. Such {\em -regular comparators} further lead to
generic algorithms for a number of well-studied problems, including the
quantitative inclusion and winning strategies in quantitative graph games with
incomplete information, as well as related non-decision problems, such as
obtaining a finite representation of all counterexamples in the quantitative
inclusion problem.
We study comparators for two aggregate functions: discounted-sum and
limit-average. We prove that the discounted-sum comparator is -regular
iff the discount-factor is an integer. Not every aggregate function, however,
has an -regular comparator. Specifically, we show that the language of
sequence-pairs for which limit-average aggregates exist is neither
-regular nor -context-free. Given this result, we introduce the
notion of {\em prefix-average} as a relaxation of limit-average aggregation,
and show that it admits -context-free comparators
On the Number of Bootstrap Repetitions for BC_a Confidence Intervals
This paper considers the problem of choosing the number bootstrap repetitions B to use with the BC_{a} bootstrap confidence intervals introduced by Efron (1987). Because the simulated random variables are ancillary, we seek a choice of B that yields a confidence interval that is close to the ideal bootstrap confidence interval for which B = infinity. We specifiy a three-step method of choosing B that ensures that the lower and upper lengths of the confidence interval deviate from those of the ideal bootstrap confidence interval by at most a small percentage with high probability.
Balancing Scalability and Uniformity in SAT Witness Generator
Constrained-random simulation is the predominant approach used in the
industry for functional verification of complex digital designs. The
effectiveness of this approach depends on two key factors: the quality of
constraints used to generate test vectors, and the randomness of solutions
generated from a given set of constraints. In this paper, we focus on the
second problem, and present an algorithm that significantly improves the
state-of-the-art of (almost-)uniform generation of solutions of large Boolean
constraints. Our algorithm provides strong theoretical guarantees on the
uniformity of generated solutions and scales to problems involving hundreds of
thousands of variables.Comment: This is a full version of DAC 2014 pape
Multi-Objective Model Checking of Markov Decision Processes
We study and provide efficient algorithms for multi-objective model checking
problems for Markov Decision Processes (MDPs). Given an MDP, M, and given
multiple linear-time (\omega -regular or LTL) properties \varphi\_i, and
probabilities r\_i \epsilon [0,1], i=1,...,k, we ask whether there exists a
strategy \sigma for the controller such that, for all i, the probability that a
trajectory of M controlled by \sigma satisfies \varphi\_i is at least r\_i. We
provide an algorithm that decides whether there exists such a strategy and if
so produces it, and which runs in time polynomial in the size of the MDP. Such
a strategy may require the use of both randomization and memory. We also
consider more general multi-objective \omega -regular queries, which we
motivate with an application to assume-guarantee compositional reasoning for
probabilistic systems.
Note that there can be trade-offs between different properties: satisfying
property \varphi\_1 with high probability may necessitate satisfying \varphi\_2
with low probability. Viewing this as a multi-objective optimization problem,
we want information about the "trade-off curve" or Pareto curve for maximizing
the probabilities of different properties. We show that one can compute an
approximate Pareto curve with respect to a set of \omega -regular properties in
time polynomial in the size of the MDP.
Our quantitative upper bounds use LP methods. We also study qualitative
multi-objective model checking problems, and we show that these can be analysed
by purely graph-theoretic methods, even though the strategies may still require
both randomization and memory.Comment: 21 pages, 2 figure
A Continuous-Discontinuous Second-Order Transition in the Satisfiability of Random Horn-SAT Formulas
We compute the probability of satisfiability of a class of random Horn-SAT
formulae, motivated by a connection with the nonemptiness problem of finite
tree automata. In particular, when the maximum clause length is 3, this model
displays a curve in its parameter space along which the probability of
satisfiability is discontinuous, ending in a second-order phase transition
where it becomes continuous. This is the first case in which a phase transition
of this type has been rigorously established for a random constraint
satisfaction problem
- …