6 research outputs found

    Genetic diversity and population structure of Peronosclerospora sorghi isolates of Sorghum in Uganda

    Full text link
    Sorghum is the third most important staple cereal crop in Uganda after maize and millet. Downy mildew disease is one of the most devastating fungal diseases which limits the production and productivity of the crop. The disease is caused by an obligate fungus, Peronosclerospora sorghi (Weston & Uppal) with varying symptoms. Information on the genetic diversity and population structure of P.sorghi in sorghum is imperative for the screening and selection for resistant genotypes and further monitoring possible mutant(s) of the pathogen. Isolates of P. sorghi infecting sorghum are difficult to discriminate when morphological descriptors are used. The use of molecular markers is efficient, and reliably precised for characterizing P. sorghi isolates. This study was undertaken to assess the level of genetic diversity and population structure that exist in P. sorghi isolates in Uganda. A total of 195 P. sorghi isolates, sampled from 13 different geographic populations from 10 different regions (agro-ecological zones) was used. Eleven (11) molecular markers, comprising of four Random amplified microsatellite (RAM) and seven (7) Inter-Simple Sequence Repeat (ISSR) markers were used in this study. The analysis of molecular variation (AMOVA) based on 11 microsatellite markers showed significant (P < 0.001) intra-population (88.9 %, PhiPT = 0.111) and inter-population (8.4 %, PhiPR = 0.083) genetic variation, while the genetic variation among regions (2.7 %, PhiRT = 0.022) was not significant. The highest genetic similarity value (0.987 = 98.7 %) was recorded between Pader and Lira populations and the lowest genetic similarity (0.913 = 91.3 %) was observed between Namutumba and Arua populations. The mean Nei's genetic diversity index (H) and Shannon Information Index (I) were 0.308 and 0.471 respectively. Seven distinct cluster groups were formed from the 195 P. sorghi isolates based on their genetic similarity. Mantel test revealed no association between genetic differentiation and geographical distance (R2 = 0.0026, p = 0.02) within the 13 geographic populations

    A highly conserved NB-LRR encoding gene cluster effective against <it>Setosphaeria turcica </it>in sorghum

    No full text
    Abstract Background The fungal pathogen Setosphaeria turcica causes turcicum or northern leaf blight disease on maize, sorghum and related grasses. A prevalent foliar disease found worldwide where the two host crops, maize and sorghum are grown. The aim of the present study was to find genes controlling the host defense response to this devastating plant pathogen. A cDNA-AFLP approach was taken to identify candidate sequences, which functions were further validated via virus induced gene silencing (VIGS), and real-time PCR analysis. Phylogenetic analysis was performed to address evolutionary events. Results cDNA-AFLP analysis was run on susceptible and resistant sorghum and maize genotypes to identify resistance-related sequences. One CC-NB-LRR encoding gene GRMZM2G005347 was found among the up-regulated maize transcripts after fungal challenge. The new plant resistance gene was designated as St referring to S. turcica. Genome sequence comparison revealed that the CC-NB-LRR encoding St genes are located on chromosome 2 in maize, and on chromosome 5 in sorghum. The six St sorghum genes reside in three pairs in one locus. When the sorghum St genes were silenced via VIGS, the resistance was clearly compromised, an observation that was supported by real-time PCR. Database searches and phylogenetic analysis suggest that the St genes have a common ancestor present before the grass subfamily split 50-70 million years ago. Today, 6 genes are present in sorghum, 9 in rice and foxtail millet, respectively, 3 in maize and 4 in Brachypodium distachyon. The St gene homologs have all highly conserved sequences, and commonly reside as gene pairs in the grass genomes. Conclusions Resistance genes to S. turcica, with a CC-NB-LRR protein domain architecture, have been found in maize and sorghum. VIGS analysis revealed their importance in the surveillance to S. turcica in sorghum. The St genes are highly conserved in sorghum, rice, foxtail millet, maize and Brachypodium, suggesting an essential evolutionary function.</p

    Farmer-preferred traits and variety choices for finger millet in Uganda

    Get PDF
    Finger millet is a climate-resilient crop providing food and nutrition security and income In Uganda. However, the current productivity of finger millet in farmers’ fields is low and among other factors, this is due to the poor adoption of improved varieties. With this study we aim to identify and profile varietal traits preferred by finger millet farmers and consumers in Uganda. We specifically focus on how these traits vary among women and men in the Ugandan finger millet value chain. We collect data using semi-structured questionnaires among 170 households growing millet in Bushenyi, Lira, and Nwoya districts, and we triangulate questionnaires replies with qualitative information from 11 focus group discussions and 3 key informant interviews. Using descriptive statistics and probit regression models, we find that the majority of the farmers (97%) prefer growing landrace varieties of finger millet compared to only 3% growing improved varieties. The most preferred varieties were Kaguma in Bushenyi, Ajuko Manyige in Nwoya, Kal Atar, and Okello Chiba in Lira. Farmers’ choice of variety depends on a combination of traits including agronomic, marketing, and consumption traits. Gender, marital status, education levels, and occupation are the major socio-demographic factors that influence specific preferences related to finger millet variety. This study lays a foundation for designing a gender-responsive finger millet product profile to guide the development and release of new varieties by the finger millet crop improvement program
    corecore