526 research outputs found
Latest Results from the Heidelberg-Moscow Double Beta Decay Experiment
New results for the double beta decay of 76Ge are presented. They are
extracted from Data obtained with the HEIDELBERG-MOSCOW, which operates five
enriched 76Ge detectors in an extreme low-level environment in the GRAN SASSO.
The two neutrino accompanied double beta decay is evaluated for the first time
for all five detectors with a statistical significance of 47.7 kg y resulting
in a half life of (T_(1/2))^(2nu) = [1.55 +- 0.01 (stat) (+0.19) (-0.15)
(syst)] x 10^(21) years. The lower limit on the half-life of the 0nu beta-beta
decay obtained with pulse shape analysis is (T_(1/2))^(0_nu) > 1.9 x 10^(25)
[3.1 x 10^(25)] years with 90% C.L. (68% C.L.) (with 35.5 kg y). This results
in an upper limit of the effective Majorana neutrino mass of 0.35 eV (0.27 eV).
No evidence for a Majoron emitting decay mode or for the neutrinoless mode is
observed.Comment: 14 pages, revtex, 6 figures, Talk was presented at third
International Conference ' Dark Matter in Astro and Particle Physics' -
DARK2000, to be publ. in Proc. of DARK2000, Springer (2000). Please look into
our HEIDELBERG Non-Accelerator Particle Physics group home page:
http://www.mpi-hd.mpg.de/non_acc
The one-loop six-dimensional hexagon integral with three massive corners
We compute the six-dimensional hexagon integral with three non-adjacent
external masses analytically. After a simple rescaling, it is given by a
function of six dual conformally invariant cross-ratios. The result can be
expressed as a sum of 24 terms involving only one basic function, which is a
simple linear combination of logarithms, dilogarithms, and trilogarithms of
uniform degree three transcendentality. Our method uses differential equations
to determine the symbol of the function, and an algorithm to reconstruct the
latter from its symbol. It is known that six-dimensional hexagon integrals are
closely related to scattering amplitudes in N=4 super Yang-Mills theory, and we
therefore expect our result to be helpful for understanding the structure of
scattering amplitudes in this theory, in particular at two loops.Comment: 15 pages, 2 figure
LASER PHYSICS LETTERS
Abstract: Raman spectroscopy offers a powerful alternative analytical method for the detection and identification of lipids/oil in biological samples, such as algae and fish. Recent research in the authors' groups, and experimental data only very recently published by us and a few other groups suggest that Raman spectroscopy can be exploited in instances where fast and accurate determination of the iodine value (associated with the degree of lipid unsaturation) is required. Here the current status of Raman spectroscopy applications on algae is reviewed, and particular attention is given to the efforts of identifying and selecting oil-rich algal strains for the potential mass production of commercial biofuels and for utilization in the food industry. Normalized intensity, a.u
Neutrinoless Double Beta Decay in Gauge Theories
Neutrinoless double beta decay is a very important process both from the
particle and nuclear physics point of view. Its observation will severely
constrain the existing models and signal that the neutrinos are massive
Majorana particles. From the elementary particle point of view it pops up in
almost every model. In addition to the traditional mechanisms, like the
neutrino mass, the admixture of right handed currents etc, it may occur due to
the R-parity violating supersymmetric (SUSY) interactions. From the nuclear
physics point of view it is challenging, because: 1) The relevant nuclei have
complicated nuclear structure. 2) The energetically allowed transitions are
exhaust a small part of all the strength. 3) One must cope with the short
distance behavior of the transition operators, especially when the intermediate
particles are heavy (eg in SUSY models). Thus novel effects, like the double
beta decay of pions in flight between nucleons, have to be considered. 4) The
intermediate momenta involved are about 100 MeV. Thus one has to take into
account possible momentum dependent terms in the nucleon current. We find that,
for the mass mechanism, such modifications of the nucleon current for light
neutrinos reduce the nuclear matrix elements by about 25 per cent, almost
regardless of the nuclear model. In the case of heavy neutrinos the effect is
much larger and model dependent.
Taking the above effects into account, the available nuclear matrix elements
for the experimentally interesting nuclei A = 76, 82, 96, 100, 116, 128, 130,
136 and 150 and the experimental limits on the life times we have extracted new
stringent limits on the average neutrino mass and on the R-parity violating
coupling for various SUSY models.Comment: Latex, 24 pages, 1 postscript figure, uses iopconf.st
PACS: 32.30.-r, 32.60.+i, 32.70
Abstract: We have measured light shifts, also known as AC Stark shifts, as a function of laser intensity in cold Rubidium atoms by observing sub-natural linewidth gain and loss features in the transmission spectrum of a weak probe beam passing through the atomic sample. The observed energy-level shifts for atoms in a magneto-optical trap (MOT) are found to be consistently higher than that obtained in optical molasses (i.e., when the magnetic field gradient in the MOT is turned off). Using a simple model of a multilevel Rubidium atom interacting with pump and probe beams, we have calculated the theoretical light shift as a function of intensity. A comparison of these calculated values with the light shift data obtained for molasses reveals good agreement between experiment and theory. Further, our model elucidates the role of the Zeeman shifts arising from the magnetic field gradient in the observed probe transmission spectrum for the MOT. A qualitative plot of the transmission spectrum of a probe beam through a fictitious sample of cold J = 1 â J = 2 atoms showing probe absorption at the sum of the pump frequency Ï pump and ÎŽ , where ÎŽ is the difference of the light shifts between the |J = 1,mJ = 0 and the |J = 1,mJ = ± 1 ground state Zeeman sublevels. Probe gain is depicted at Ï pump -ÎŽ . Se
The politics of in/visibility: carving out queer space in Ul'yanovsk
<p>In spite of a growing interest within sexualities studies in the concept of queer space (Oswin 2008), existing literature focuses almost exclusively on its most visible and territorialised forms, such as the gay scene, thus privileging Western metropolitan areas as hubs of queer consumer culture (Binnie 2004). While the literature has emphasised the political significance of queer space as a site of resistance to hegemonic gender and sexual norms, it has again predominantly focused on overt claims to public space embodied in Pride events, neglecting other less open forms of resistance.</p><p>
This article contributes new insights to current debates about the construction and meaning of queer space by considering how city space is appropriated by an informal queer network in Ulâianovsk. The group routinely occupied very public locations meeting and socialising on the street or in mainstream cafĂ©s in central Ulâianovsk, although claims to these spaces as queer were mostly contingent, precarious or invisible to outsiders. The article considers how provincial location affects tactics used to carve out communal space, foregrounding the importance of local context and collective agency in shaping specific forms of resistance, and questioning ethnocentric assumptions about the empowering potential of visibility.</p>
Non-Baryonic Dark Matter - Observational Evidence and Detection Methods
The evidence for the existence of dark matter in the universe is reviewed. A
general picture emerges, where both baryonic and non-baryonic dark matter is
needed to explain current observations. In particular, a wealth of
observational information points to the existence of a non-baryonic component,
contributing between around 20 and 40 percent of the critical mass density
needed to make the universe geometrically flat on large scales. In addition, an
even larger contribution from vacuum energy (or cosmological constant) is
indicated by recent observations. To the theoretically favoured particle
candidates for non-baryonic dark matter belong axions, supersymmetric
particles, and of less importance, massive neutrinos. The theoretical
foundation and experimental situation for each of these is reviewed. Direct and
indirect methods for detection of supersymmetric dark matter are described in
some detail. Present experiments are just reaching the required sensitivity to
discover or rule out some of these candidates, and major improvements are
planned over the coming years.Comment: Submitted to Reports on Progress in Physics, 59 pages, LaTeX, iopart
macro, 14 embedded postscript figure
STATUS OF THE INVERSE FREE ELECTRON LASER EXPERIMENT AT THE NEPTUNE LABORATORY
Abstract We report on the status of the Inverse Free Electron Laser accelerator experiment under construction at the UCLA Neptune Laboratory. This experiment will use a 400 GW CO 2 laser to accelerate through a tapered undulator an electron beam from 14.5 MeV up to 55 MeV. The scheme proposed is the diffraction dominated IFEL interaction where the Rayleigh range of the laser beam is 3.5 cm, much shorter than the interaction length (the undulator length is 50 cm). The undulator is strongly tapered in both field and period. The present status of the experiment is reported
- âŠ