18 research outputs found
Bisphosphonates as antimyeloma drugs
In patients with symptomatic multiple myeloma (MM), bisphosphonate (BP) treatment has been widely used to prevent bone loss and preserve skeletal health because of its proven effects on inhibiting osteoclast-mediated bone resorption. In addition to their effects on osteoclasts, it is becoming increasingly evident that BPs may have additional effects on the bone microenvironment and cells other than osteoclasts that may potentially inhibit the development and progression of MM. This review focuses on the pathophysiology of MM with an emphasis on the events that drive MM progression within the bone and the mechanisms by which BPs may inhibit specific processes. The underlying molecular mechanisms that drive the modulation of cellular fate and function and consequent physiological outcomes are described. Direct effects on myeloma cell growth and survival and the interactions between myeloma cells and the bone microenvironment are discussed. Clinical evidence of the antimyeloma effects of BPs is emerging and is also reviewed
Identification of aberrant forms of alkaline sphingomyelinase (NPP7) associated with human liver tumorigenesis
Alkaline sphingomyelinase (alk-SMase) is expressed in the intestine and human liver. It may inhibit colonic tumorigenesis, and loss of function mutations have been identified in human colon cancer. The present study investigates its expression in human liver cancer. In HepG2 liver cancer cells, RT–PCR identified three transcripts with 1.4, 1.2 and 0.4 kb, respectively. The 1.4 kb form is the wild-type cDNA with five translated exons, the 1.2 kb product lacks exon 4 and the 0.4 kb form is a combination of exons 1 and 5. Genomic sequence showed that these aberrant transcripts were products of alternative splicing. Transient expression of the 1.2 kb form showed no alk-SMase activity. In HepG2 cells, the alk-SMase activity is low in monolayer condition and increased with cell polarisation. Coexistence of 1.4 and 1.2 kb forms was also identified in one hepatoma biopsy. GenBank search identified a cDNA clone from human liver tumour, which codes a protein containing full length of alk-SMase plus a 73-amino-acid tag at the N terminus. The aberrant form was translated by an alternative starting codon upstream of the wild-type mRNA. Expression study showed that linking the tag markedly reduced the enzyme activity. We also analysed human liver biopsy samples and found relatively low alk-SMase activity in diseases with increased risk of liver tumorigenesis. In conclusion, expression of alk-SMase is changed in hepatic tumorigenesis, resulting in loss or marked reduction of the enzyme function
Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer
Recent reports have suggested the involvement of gut microbiota in the progression of colorectal cancer (CRC). We utilized pyrosequencing based analysis of 16S rRNA genes to determine the overall structure of microbiota in patients with colorectal cancer and healthy controls; we investigated microbiota of the intestinal lumen, the cancerous tissue and matched noncancerous normal tissue. Moreover, we investigated the mucosa-adherent microbial composition using rectal swab samples because the structure of the tissue-adherent bacterial community is potentially altered following bowel cleansing. Our findings indicated that the microbial structure of the intestinal lumen and cancerous tissue differed significantly. Phylotypes that enhance energy harvest from diets or perform metabolic exchange with the host were more abundant in the lumen. There were more abundant Firmicutes and less abundant Bacteroidetes and Proteobacteria in lumen. The overall microbial structures of cancerous tissue and noncancerous tissue were similar; howerer the tumor microbiota exhibited lower diversity. The structures of the intestinal lumen microbiota and mucosa-adherent microbiota were different in CRC patients compared to matched microbiota in healthy individuals. Lactobacillales was enriched in cancerous tissue, whereas Faecalibacterium was reduced. In the mucosa-adherent microbiota, Bifidobacterium, Faecalibacterium, and Blautia were reduced in CRC patients, whereas Fusobacterium, Porphyromonas, Peptostreptococcus, and Mogibacterium were enriched. In the lumen, predominant phylotypes related to metabolic disorders or metabolic exchange with the host, Erysipelotrichaceae, Prevotellaceae, and Coriobacteriaceae were increased in cancer patients. Coupled with previous reports, these results suggest that the intestinal microbiota is associated with CRC risk and that intestinal lumen microflora potentially influence CRC risk via cometabolism or metabolic exchange with the host. However, mucosa-associated microbiota potentially affects CRC risk primarily through direct interaction with the host
The Insulin Receptor Substrate 1 (Irs1) in Intestinal Epithelial Differentiation and in Colorectal Cancer
Colorectal cancer (CRC) is associated with lifestyle factors that affect insulin/IGF signaling, of which the insulin receptor substrate 1 (IRS1) is a key transducer. We investigated expression, localization and pathologic correlations of IRS1 in cancer-uninvolved colonic epithelium, primary CRCs with paired liver metastases and in vitro polarizing Caco2 and HT29 cells. IRS1 mRNA and protein resulted higher, relative to paired mucosa, in adenomas of familial adenomatous polyposis patients and in CRCs that overexpressed c-MYC, ß-catenin, InsRß, and IGF1R. Analysis of IRS1 immunostaining in 24 cases of primary CRC with paired colonic epithelium and hepatic metastasis showed that staining intensity was significantly higher in metastases relative to both primary CRC (P<0.01) and colonic epithelium (P<0.01). Primary and metastatic CRCs, compared to colonic epithelium, contained significantly higher numbers of IRS1-positive cells (P = 0.013 and P = 0.014, respectively). Pathologic correlations in 163 primary CRCs revealed that diffuse IRS1 staining was associated with tumors combining differentiated phenotype and aggressive markers (high Ki67, p53, and ß-catenin). In Caco 2 IRS1 and InsR were maximally expressed after polarization, while IGF1R was highest in pre-polarized cells. No nuclear IRS1 was detected, while, with polarization, phosphorylated IRS1 (pIRS1) shifted from the lateral to the apical plasma membrane and was expressed in surface cells only. In HT29, that carry mutations constitutively activating survival signaling, IRS1 and IGF1R decreased with polarization, while pIRS1 localized in nuclear spots throughout the course. Overall, these data provide evidence that IRS1 is modulated according to CRC differentiation, and support a role of IRS1 in CRC progression and liver metastatization