3,439 research outputs found

    Independent sets of maximum weight in apple-free graphs

    Get PDF
    We present the first polynomial-time algorithm to solve the maximum weight independent set problem for apple-free graphs, which is a common generalization of several important classes where the problem can be solved efficiently, such as claw-free graphs, chordal graphs, and cographs. Our solution is based on a combination of two algorithmic techniques (modular decomposition and decomposition by clique separators) and a deep combinatorial analysis of the structure of apple-free graphs. Our algorithm is robust in the sense that it does not require the input graph G to be apple-free; the algorithm either finds an independent set of maximum weight in G or reports that G is not apple-free

    Efficient discrete-time simulations of continuous-time quantum query algorithms

    Full text link
    The continuous-time query model is a variant of the discrete query model in which queries can be interleaved with known operations (called "driving operations") continuously in time. Interesting algorithms have been discovered in this model, such as an algorithm for evaluating nand trees more efficiently than any classical algorithm. Subsequent work has shown that there also exists an efficient algorithm for nand trees in the discrete query model; however, there is no efficient conversion known for continuous-time query algorithms for arbitrary problems. We show that any quantum algorithm in the continuous-time query model whose total query time is T can be simulated by a quantum algorithm in the discrete query model that makes O[T log(T) / log(log(T))] queries. This is the first upper bound that is independent of the driving operations (i.e., it holds even if the norm of the driving Hamiltonian is very large). A corollary is that any lower bound of T queries for a problem in the discrete-time query model immediately carries over to a lower bound of \Omega[T log(log(T))/log (T)] in the continuous-time query model.Comment: 12 pages, 6 fig

    Interface bonding of a ferromagnetic/semiconductor junction : a photoemission study of Fe/ZnSe(001)

    Full text link
    We have probed the interface of a ferromagnetic/semiconductor (FM/SC) heterojunction by a combined high resolution photoemission spectroscopy and x-ray photoelectron diffraction study. Fe/ZnSe(001) is considered as an example of a very low reactivity interface system and it expected to constitute large Tunnel Magnetoresistance devices. We focus on the interface atomic environment, on the microscopic processes of the interface formation and on the iron valence-band. We show that the Fe contact with ZnSe induces a chemical conversion of the ZnSe outermost atomic layers. The main driving force that induces this rearrangement is the requirement for a stable Fe-Se bonding at the interface and a Se monolayer that floats at the Fe growth front. The released Zn atoms are incorporated in substitution in the Fe lattice position. This formation process is independent of the ZnSe surface termination (Zn or Se). The Fe valence-band evolution indicates that the d-states at the Fermi level show up even at submonolayer Fe coverage but that the Fe bulk character is only recovered above 10 monolayers. Indeed, the Fe 1-band states, theoretically predicted to dominate the tunneling conductance of Fe/ZnSe/Fe junctions, are strongly modified at the FM/SC interface.Comment: 23 pages, 5 figures, submitted to Physical review

    Resonant tunneling magnetoresistance in epitaxial metal-semiconductor heterostructures

    Full text link
    We report on resonant tunneling magnetoresistance via localized states through a ZnSe semiconducting barrier which can reverse the sign of the effective spin polarization of tunneling electrons. Experiments performed on Fe/ZnSe/Fe planar junctions have shown that positive, negative or even its sign-reversible magnetoresistance can be obtained, depending on the bias voltage, the energy of localized states in the ZnSe barrier and spatial symmetry. The averaging of conduction over all localized states in a junction under resonant condition is strongly detrimental to the magnetoresistance

    Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs

    Full text link
    In support of the growing interest in quantum computing experimentation, programmers need new tools to write quantum algorithms as program code. Compared to debugging classical programs, debugging quantum programs is difficult because programmers have limited ability to probe the internal states of quantum programs; those states are difficult to interpret even when observations exist; and programmers do not yet have guidelines for what to check for when building quantum programs. In this work, we present quantum program assertions based on statistical tests on classical observations. These allow programmers to decide if a quantum program state matches its expected value in one of classical, superposition, or entangled types of states. We extend an existing quantum programming language with the ability to specify quantum assertions, which our tool then checks in a quantum program simulator. We use these assertions to debug three benchmark quantum programs in factoring, search, and chemistry. We share what types of bugs are possible, and lay out a strategy for using quantum programming patterns to place assertions and prevent bugs.Comment: In The 46th Annual International Symposium on Computer Architecture (ISCA '19). arXiv admin note: text overlap with arXiv:1811.0544

    Configurations of business model themes and strategies in small firms: a qualitative comparative analysis

    Get PDF
    Firms' strategies and business model themes (BMTs) entail choices that create a configuration of interdependent elements that ultimately affect a firm's performance. So far, extant studies on BMTs (i.e. novelty, efficiency, complementarity and lock-in) have neglected an explorative analysis of how configurations of BMTs and the choices of a firm's strategy (namely, the source of the competitive advantage and the market scope) are associated with a firm's performance in small and medium enterprises (SMEs). We address this limitation by analysing a sample of 96 small firms using a configurational approach. We identified four equifinal configurations leading to high performance and five equifinal configurations associated with low performance. Overall, our results suggest that in small firms, it is essential to combine a differentiation strategy with either consistent pairs of BMTs or the search for new avenues of value creation and capture, while featuring too many BMTs might be detrimental to their growth. Our study contributes to the scholarly debate about the relationship between business models and strategy

    Approximating Fractional Time Quantum Evolution

    Full text link
    An algorithm is presented for approximating arbitrary powers of a black box unitary operation, Ut\mathcal{U}^t, where tt is a real number, and U\mathcal{U} is a black box implementing an unknown unitary. The complexity of this algorithm is calculated in terms of the number of calls to the black box, the errors in the approximation, and a certain `gap' parameter. For general U\mathcal{U} and large tt, one should apply U\mathcal{U} a total of t\lfloor t \rfloor times followed by our procedure for approximating the fractional power Utt\mathcal{U}^{t-\lfloor t \rfloor}. An example is also given where for large integers tt this method is more efficient than direct application of tt copies of U\mathcal{U}. Further applications and related algorithms are also discussed.Comment: 13 pages, 2 figure
    corecore