14 research outputs found

    More Problems After Difficult Problems? Behavioral and Electrophysiological Evidence for Sequential Difficulty Effects in Mental Arithmetic

    No full text
    This study investigated whether sequential difficulty effects emerge during processing of a mixed set of small, easy and large, more difficult arithmetic problems. Furthermore, we assessed if these sequential difficulty effects are reflected in event-related (de-)synchronization (ERS/ERD) patterns. To this end, we analyzed data of 65 participants, who solved two separate blocks (additions and subtractions) of arithmetic problems while their EEG was recorded. In each block, half of the problems were difficult problems (two-digit/two-digit with carry/borrow), and the other half were easy problems (one-digit/one-digit). Half of the problems were preceded by a problem of the same difficulty (repeat trials), and half were preceded by problems of the other difficulty (switch trials). In subtractions a sequential difficulty effects pattern emerged. Participants solved easy repeat trials faster than easy switch trials, while difficult repeat trials were solved slower and less accurately than difficult switch trials. In the EEG, we found the strongest effects in left hemispheric beta band (13–30 Hz) ERD. Specifically, participants showed a stronger beta band ERD in easy switch trials than in easy repeat trials. Furthermore, beta band ERD was stronger in difficult problems than in easy problems within repeat trials, but stronger in easy problems than in difficult problems within switch trials. In summary, our results are in line with the presence of sequential difficulty effects, as processing of easy and difficult problems was impaired if they were preceded by a difficult problem. Furthermore, these sequential difficulty effects are reflected in ERD patterns

    Laser cleaning of silicon surfaces

    No full text
    The continuing trend towards miniaturization of integrated circuits requires increasing effots and new concepts to clean wafer surfaces from dust particles. We report here about our studies of the "steam laser cleaning" process first described by Tam and coworkers: In order to remove sub-micron particles from a surface, first a thin liquid layer is condensed onto the substrate from the gas phase, and is subsequently evaporated momentarily by irradiating the surface with a short laser pulse. We have investigated the nucleation and growth of gas bubbles in the liquid, by which the whole process is started, with optical techniques like light scattering and surface plasmon resonance spectroscopy. The experiments indicate that the temperature where nucleation sets in is surprisingly low, which facilitates the application of this phenomenon for cleaning purposes. On the basis of these results and in order to study the cleaning effect for the particularly interesting surface of silicon in a quantitative way, we have deposited well-characterized spherical polymer and silica particles of different diameters from several ten to hundred nanometers on commercial Si wafers and have studied systematically the cleaning efficiency of the explosive evaporation process. The results show that steam laser cleaning is a promising and suitable method for removing sub-micron particles from semiconductor surfaces

    Steam laser cleaning of silicon surfaces : laser-induced gas bubble nucleation and efficiency measurements

    No full text
    The removal of dust particles from semiconductor surfaces requires new cleaning strategies such as Steam Laser Cleaning (SLC). It is based on laser-induced explosive evaporation of a liquid layer applied on the surface. We have investigated the laser-induced nucleation and growth of gas bubbles at silicon/water, silicon/isopropanol and silver-film/water - interfaces by light scattering and surface plasmon spectroscopy. The achieved superheating of the liquid before bubble nucleation sets in strongly depends on the substrate roughness. On rough metal films it is only about 30 K in water, compared to about 150 K on smooth silicon surfaces. Isopropanol (IPA) on smooth silicon surfaces could be heated to 116° C, corresponding to a superheating of 36 K. In combination with numerical calculations it was possible to determine the heat transfer coefficients silicon-water (x = 3 ·107 W/m2 K) and silicon IPA (x = 1 ·107 W/m2 K). Using optical techniques we have measured the pressure wave created by the growing bubbles and the bubble growth velocities. For a quantitative study of the efficiency of SLC we deposited spherical colloidal particles on industrial silicon wafers. We observed a sharp threshold for particle removal at 110 mJ/cm2 (laser l = 532 nm, FWHM = 8 ns) which is independent of the size (diameter 800 nm down to 60 nm) and material of the particles and efficiencies above 90% for particle removal. On the basis of our results we discuss the validity of the existing SLC models and the perspective of the application of SLC as an industrial cleaning tool

    Spike-triggered reaction-time EEG as a possible assessment tool for driving ability

    No full text
    The impact of interictal epileptic activity (IEA) on driving is a rarely investigated issue. We analyzed the impact of IEA on reaction time in a pilot study. Reactions to simple visual stimuli (light flash) in the Flash test or complex visual stimuli (obstacle on a road) in a modified car driving computer game, the Steer Clear, were measured during IEA bursts and unremarkable electroencephalography (EEG) periods. Individual epilepsy patients showed slower reaction times (RTs) during generalized IEA compared to RTs during unremarkable EEG periods. RT differences were approximately 300 ms (p 100 ms may become clinically relevant. This occurred in 40% of patients in the Flash test and in up to 50% in the Steer Clear. When RT were pooled, mean RT differences were 157 ms in the Flash test (p < 0.0001) and 116 ms in the Steer Clear (p < 0.0001). Generalized IEA of short duration seems to impair brain function, that is, the ability to react. The reaction-time EEG could be used routinely to assess driving ability

    Theta Band Transcranial Alternating Current Stimulation Enhances Arithmetic Learning: A Systematic Comparison of Different Direct and Alternating Current Stimulations

    No full text
    Over the last decades, interest in transcranial electrical stimulation (tES) has grown, as it might allow for causal investigations of the associations between cortical activity and cognition as well as to directly influence cognitive performance. The main objectives of the present work were to assess whether tES can enhance the acquisition and application of arithmetic abilities, and whether it enables a better assessment of underlying neurophysiological processes. To this end, the present, double-blind, sham-controlled study assessed the effects of six active stimulations (three tES protocols: anodal transcranial direct current stimulation (tDCS), alpha band transcranial alternating current stimulation (tACS), and theta band tACS; targeting the left dorsolateral prefrontal cortex or the left posterior parietal cortex) on the acquisition of an arithmetic procedure, arithmetic facts, and event-related synchronization/desynchronization (ERS/ERD) patterns. 137 healthy adults were randomly assigned to one of seven groups, each receiving one of the tES-protocols during learning. Results showed that frontal theta band tACS reduced the repetitions needed to learn novel facts and both, frontal and parietal theta band tACS accelerated the decrease in calculation times in fact learning problems. The beneficial effect of frontal theta band tACS may reflect enhanced executive functions, allowing for better control and inhibition processes and hence, a faster acquisition and integration of novel fact knowledge. However, there were no significant effects of the stimulations on procedural learning or ERS/ERD patterns. Overall, theta band tACS appears promising as a support for arithmetic fact training, but effects on procedural calculations and neurophysiological processes remain ambiguous

    Optical near field effects in surface nanostructuring and laser cleaning

    No full text
    We present a method for directly imaging the undisturbed near field of a particle resting on a surface. A comparison with numerical computations shows good agreement with the results of our experiments. These results have important consequences for laser-assisted particle removal where field enhancement may cause local surface damage and is one of the physical key processes in this cleaning method. On the other hand, the application of near fields at particles allows structuring of surfaces with structure dimensions in the order of 100 nm and even below

    GABA(B)-receptor subtypes assemble into functional heteromeric complexes

    No full text
    B-type receptors for the neurotransmitter GABA (gamma-aminobutyric acid) inhibit neuronal activity through G-protein-coupled second-messenger systems, which regulate the release of neurotransmitters and the activity of ion channels and adenylyl cyclase. Physiological and biochemical studies show that there are differences in drug efficiencies at different GABA(B) receptors, so it is expected that GABA(B)-receptor (GABA(B)R) subtypes exist. Two GABA(B)-receptor splice variants have been cloned (GABA(B)R1a and GABA(B)R1b), but native GABA(B) receptors and recombinant receptors showed unexplained differences in agonist-binding potencies. Moreover, the activation of presumed effector ion channels in heterologous cells expressing the recombinant receptors proved difficult. Here we describe a new GABA(B) receptor subtype, GABA(B)R2, which does not bind available GABA(B) antagonists with measurable potency. GABA(B)R1a, GABA(B)R1b and GABA(B)R2 alone do not activate Kir3-type potassium channels efficiently, but co-expression of these receptors yields a robust coupling to activation of Kir3 channels. We provide evidence for the assembly of heteromeric GABA(B) receptors in vivo and show that GABA(B)R2 and GABA(B)R1a/b proteins immunoprecipitate and localize together at dendritic spines. The heteromeric receptor complexes exhibit a significant increase in agonist- and partial-agonist-binding potencies as compared with individual receptors and probably represent the predominant native GABA(B) receptor. Heteromeric assembly among G-protein-coupled receptors has not, to our knowledge, been described before

    Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice

    No full text
    GABAB receptors mediate slow synaptic inhibition in the nervous system. In transfected cells, functional GABAB receptors are usually only observed after coexpression of GABAB(1) and GABAB(2) subunits, which established the concept of heteromerization for G-protein-coupled receptors. In the heteromeric receptor, GABAB(1) is responsible for binding of GABA, whereas GABAB(2) is necessary for surface trafficking and G-protein coupling. Consistent with these in vitro observations, the GABAB(1) subunit is also essential for all GABAB signaling in vivo. Mice lacking the GABAB(1) subunit do not exhibit detectable electrophysiological, biochemical, or behavioral responses to GABAB agonists. However, GABAB(1) exhibits a broader cellular expression pattern than GABAB(2), suggesting that GABAB(1) could be functional in the absence of GABAB(2). We now generated GABAB(2)-deficient mice to analyze whether GABAB(1) has the potential to signal without GABAB(2) in neurons. We show that GABAB(2)-/- mice suffer from spontaneous seizures, hyperalgesia, hyperlocomotor activity, and severe memory impairment, analogous to GABAB(1)-/- mice. This clearly demonstrates that the lack of heteromeric GABAB(1,2) receptors underlies these phenotypes. To our surprise and in contrast to GABAB(1)-/- mice, we still detect atypical electrophysiological GABAB responses in hippocampal slices of GABAB(2)-/- mice. Furthermore, in the absence of GABAB(2), the GABAB(1) protein relocates from distal neuronal sites to the soma and proximal dendrites. Our data suggest that association of GABAB(2) with GABAB(1) is essential for receptor localization in distal processes but is not absolutely necessary for signaling. It is therefore possible that functional GABAB receptors exist in neurons that naturally lack GABAB(2) subunits
    corecore