8 research outputs found

    Mechanistic Dissection of the Cop9 Signalosomeā€™s Deneddylation Activity on Cullin-RING Ligases

    Get PDF
    We set out to understand the precise mechanisms that regulate the activation and deactivation of Cullin-RING Ligases (CRLs). While a great deal of work has already gone into identifying the players involved in these pathways and the cellular consequences associated with the loss of each, the biochemical mechanisms regulating these steps have remained elusive. In this work we sought to gain a better understanding of the mechanisms behind these steps by teasing apart specific their biochemical reactions. By measuring the individual microscopic rate constants of the reactions we have shed light on both the proper sequence of events in the regulation of CRLs as well as how they are in fact controlled. Prior to this work, it was believed that CSN deactivated CRLs by binding them and enzymatically removing the activating post-translation modification Nedd8. It was believed that CSN could not bind to CRLs while they were active due to the steric hindrance by the CRL substrates, and that they would remain bound to deneddylated CRLs as a sequestering agent until a new substrate could displace it. We now have some insight that substrates themselves cannot inhibit CSN very well, but that the active ubiquitination by an E2 enzyme precludes CSN binding and activity. When the substrate for a CRL becomes depleted, CSN then binds to the CRL in a low affinity, low activity conformation. This triggers a conformational change that pulls the autoinhibitory Ins-1 loop away from the active site in the catalytic subunit Csn5, resulting in a large increase in affinity and cleavage of the isopeptide bond between CRLs and Nedd8. Upon dissociation of Nedd8, CSN rapidly returns to the low affinity state and dissociates from the CRL, allowing it reenter its activation cycle.</p

    Deconjugation of Nedd8 from Cul1 Is Directly Regulated by Skp1-F-box and Substrate, and the COP9 Signalosome Inhibits Deneddylated SCF by a Noncatalytic Mechanism

    Get PDF
    COP9 signalosome (CSN) mediates deconjugation of the ubiquitin-like protein Nedd8 from the cullin subunits of SCF and other cullin-RING ubiquitin ligases (CRLs). This process is essential to maintain the proper activity of CRLs in cells. Here, we report a detailed kinetic characterization of CSN-mediated deconjugation of Nedd8 from SCF. CSN is an efficient enzyme, with a k_(cat) of āˆ¼1 s^(āˆ’1) and K_mfor neddylated Cul1-Rbx1 of āˆ¼200 nm, yielding a k_(cat)/K_m near the anticipated diffusion-controlled limit. Assembly with an F-box-Skp1 complex markedly inhibited deneddylation, although the magnitude varied considerably, with Fbw7-Skp1 inhibiting by āˆ¼5-fold but Skp2-Cks1-Skp1 by only āˆ¼15%. Deneddylation of both SCF^(Fbw7) and SCF^(Skp2-Cks1) was further inhibited āˆ¼2.5-fold by the addition of substrate. Combined, the inhibition by Fbw7-Skp1 plus its substrate cyclin E was greater than 10-fold. Unexpectedly, our results also uncover significant product inhibition by deconjugated Cul1, which results from the ability of Cul1 to bind tightly to CSN. Reciprocally, CSN inhibits the ubiquitin ligase activity of deneddylated Cul1. We propose a model in which assembled CRL complexes engaged with substrate are normally refractory to deneddylation. Upon consumption of substrate and subsequent deneddylation, CSN can remain stably bound to the CRL and hold it in low state of reduced activity

    A far downstream enhancer for murine Bcl11b controls its T-cell specific expression

    Get PDF
    Bcl11b is a T-cell specific gene in hematopoiesis that begins expression during T-lineage commitment and is required for this process. Aberrant expression of BCL11B or proto-oncogene translocation to the vicinity of BCL11B can be a contributing factor in human T-ALL. To identify the mechanism that controls its distinctive T-lineage expression, we corrected the identified Bcl11b transcription start site and mapped a cell-typeā€“specific differentially methylated region bracketing the Bcl11b promoter. We identified a 1.9-kb region 850 kb downstream of Bcl11b, ā€œMajor Peak,ā€ distinguished by its dynamic histone marking pattern in development that mirrors the pattern at the Bcl11b promoter. Looping interactions between promoter-proximal elements including the differentially methylated region and downstream elements in the Major Peak are required to recapitulate the T-cell specific expression of Bcl11b in stable reporter assays. Functional dissection of the Major Peak sequence showed distinct subregions, in which TCF-1 sites and a conserved element were required for T-lineageā€“specific activation and silencing in non-T cells. A bacterial artificial chromosome encompassing the full Bcl11b gene still required the addition of the Major Peak to exhibit T-cell specific expression. Thus, promoter-proximal and Major Peak sequences are cis-regulatory elements that interact over 850 kb to control expression of Bcl11b in hematopoietic cells

    Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

    Get PDF
    The COP9-Signalosome (CSN) regulates cullinā€“RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network

    Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

    No full text
    The COP9-Signalosome (CSN) regulates cullin-RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network.publishe

    Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

    No full text
    The COP9-Signalosome (CSN) regulates cullinā€“RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network

    Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

    No full text
    The COP9-Signalosome (CSN) regulates cullinā€“RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network.ISSN:2050-084
    corecore