31 research outputs found

    Recursive dynamic mode decomposition of transient and post-transient wake flows

    Get PDF
    A novel data-driven modal decomposition of fluid flow is proposed, comprising key features of proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The first mode is the normalized real or imaginary part of the DMD mode that minimizes the time-averaged residual. The NNth mode is defined recursively in an analogous manner based on the residual of an expansion using the first N−1N−1 modes. The resulting recursive DMD (RDMD) modes are orthogonal by construction, retain pure frequency content and aim at low residual. Recursive DMD is applied to transient cylinder wake data and is benchmarked against POD and optimized DMD (Chen et al., J. Nonlinear Sci., vol. 22, 2012, pp. 887–915) for the same snapshot sequence. Unlike POD modes, RDMD structures are shown to have purer frequency content while retaining a residual of comparable order to POD. In contrast to DMD, with exponentially growing or decaying oscillatory amplitudes, RDMD clearly identifies initial, maximum and final fluctuation levels. Intriguingly, RDMD outperforms both POD and DMD in the limit-cycle resolution from the same snapshots. Robustness of these observations is demonstrated for other parameters of the cylinder wake and for a more complex wake behind three rotating cylinders. Recursive DMD is proposed as an attractive alternative to POD and DMD for empirical Galerkin models, in particular for nonlinear transient dynamics

    Strontium optical lattice clocks for practical realization of the metre and secondary representation of the second

    Full text link
    We present a system of two independent strontium optical lattice standards probed with a single shared ultra-narrow laser. The absolute frequency of the clocks can be verified by the use of Er:fiber optical frequency comb with the GPS-disciplined Rb frequency standard. We report hertz-level spectroscopy of the clock line and measurements of frequency stability of the two strontium optical lattice clocks.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Meas. Sci. Technol. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/0957-0233/26/7/07520

    Fibre-optic delivery of time and frequency to VLBI station

    Full text link
    The quality of Very Long Baseline Interferometry (VLBI) radio observations predominantly relies on precise and ultra-stable time and frequency (T&F) standards, usually hydrogen masers (HM), maintained locally at each VLBI station. Here, we present an operational solution in which the VLBI observations are routinely carried out without use of a local HM, but using remote synchronization via a stabilized, long-distance fibre-optic link. The T&F reference signals, traceable to international atomic timescale (TAI), are delivered to the VLBI station from a dedicated timekeeping laboratory. Moreover, we describe a proof-of-concept experiment where the VLBI station is synchronized to a remote strontium optical lattice clock during the observation.Comment: 8 pages, 8 figures, matches the version published in A&A, section Astronomical instrumentatio

    Line shape measurements of rubidium 5S-7S two-photon transition

    Get PDF
    We report the use of a digital lock to measure the line profile and center frequency of rubidium 5S-7S two-photon transitions with a cw laser referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm), insensitive to first-order in a magnetic field, is a promising candidate for frequency reference

    Fast Approximated POD for a Flat Plate Benchmark with a Time Varying Angle of Attack

    Get PDF
    An approximate POD algorithm provides an empirical Galerkin approximation with guaranteed a priori lower bound on the required resolution. The snapshot ensemble is partitioned into several sub-ensembles. Cross correlations between these sub-ensembles are approximated in terms of a far smaller correlation matrix. Computational speedup is nearly linear in the number of partitions, up to a saturation that can be estimated a priori. The algorithm is particularly suitable for analyzing long transient trajectories of high dimensional simulations, but can be applied also for spatial partitioning and parallel processing of very high spatial dimension data. The algorithm is demonstrated using transient data from two simulations. First, a two dimensional simulation of the flow over a flat plate, as it transitions from AOA = 30° to a horizontal position and back. Second, a three dimensional simulation of a flat plate with aspect ratio two as it transitions from a horizontal position to AOA = 30°

    3D Global Flow Stability Analysis on Unstructured Grids

    No full text

    Modal analysis of viscous flow and reduced order models

    No full text
    Phenomena occurring in the flows are very complex. Their interpretation, as well as an effective impact on them in the flow control is often only possible with the use of modal analysis and low-dimensional models. In this paper, the selected modal decomposition techniques, namely Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD) and global stability analysis, are briefly introduced. The design of Reduced Order models basing on Galerkin projection is presented on the example of the flow past a bluff body. Finally, the issues of widening of the application of the models are addressed

    Novel method of physical modes generation for reduced order flow control-oriented models

    No full text
    Physical flow modes are of particular interest for Reduced Order Flow Control-Oriented Models. Computation of physical modes as the eigensolution of linearized Navier-Stokes equations is a cumbersome and difficult task, especially for large, 3D problems. Instead we propose the solution of Navier-Stokes equation in the frequency domain and investigation of the system response to local or global perturbation. The flow variables are perturbed around steady basic state and the system response is used to construct mode basis suitable for ROMs

    Arbitrary Lagrangian-Eulerian approach in reduced order modeling of a flow with a moving boundary

    No full text
    Flow-induced deflections of aircraft structures result in oscillations that might turn into such a dangerous phenomena like flutter or buffeting. In this paper the design of an aeroelastic system consisting of Reduced Order Model (ROM) of the flow with a moving boundary is presented. The model is based on Galerkin projection of governing equation onto space spanned by modes obtained from high-fidelity computations. The motion of the boundary and mesh is defined in Arbitrary Lagrangian-Eulerian (ALE) approach and results in additional convective term in Galerkin system. The developed system is demonstrated on the example of a flow around an oscillating wing
    corecore