15 research outputs found
Body composition study by dual-energy x-ray absorptiometry in familial partial lipodystrophy: finding new tools for an objective evaluation
<p>Abstract</p> <p>Background</p> <p>Familial partial lipodystrophies (FPLD) are clinically heterogeneous disorders characterized by selective loss of adipose tissue, insulin resistance and metabolic complications. Until genetic studies become available for clinical practice, clinical suspicion and pattern of fat loss are the only parameters leading clinicians to consider the diagnosis. The objective of this study was to compare body composition by dual energy X-ray absorptiometry (DXA) in patients with FPLD and control subjects, aiming to find objective variables for evaluation of FPLD.</p> <p>Methods</p> <p>Eighteen female patients with partial lipodystrophy phenotype and 16 healthy controls, matched for body mass index, sex and age were studied. All participants had body fat distribution evaluated by DXA measures. Fasting blood samples were obtained for evaluation of plasma leptin, lipid profile and inflammatory markers. Genetic studies were carried out on the 18 patients selected that were included for statistical analysis. Thirteen women confirmed diagnosis of Dunnigan-type FPLD (FPLD2).</p> <p>Results</p> <p>DXA revealed a marked decrease in truncal fat and 3 folds decrease in limbs fat percentage in FPLD2 patients (p <0.001). Comparative analysis showed that ratio between trunk and lower limbs fat mass, characterized as Fat Mass Ratio (FMR), had a greater value in FLPD2 group (1.86 ± 0.43 vs controls 0.93 ± 0.10; p <0.001) and a improved accuracy for evaluating FPLD2 with a cut-off point of 1.2. Furthermore, affected women showed hypoleptinemia (FLPD2 4.9 ± 2.0 vs controls 18.2 ± 6.8; p <0.001), insulin resistance and a more aggressive lipid profile.</p> <p>Conclusion</p> <p>In this study, assessment of body fat distribution by DXA permitted an objective characterization of FLPD2. A consistent pattern with marked fat reduction of lower body was observed in affected patients. To our knowledge this is the first time that cut-off values of objective variables were proposed for evaluation of FPLD2.</p