526 research outputs found

    Primordial Density Perturbation in Effective Loop Quantum Cosmology

    Full text link
    It is widely believed that quantum field fluctuation in an inflating background creates the primeval seed perturbation which through subsequent evolution leads to the observed large scale structure of the universe. The standard inflationary scenario produces scale invariant power spectrum quite generically but it produces, unless fine tuned, too large amplitude for the primordial density perturbation than observed. Using similar techniques it is shown that loop quantum cosmology induced inflationary scenario can produce scale invariant power spectrum as well as small amplitude for the primordial density perturbation without fine tuning. Further its power spectrum has a qualitatively distinct feature which is in principle falsifiable by observation and can distinguish it from the standard inflationary scenario.Comment: 33 pages, revtex4, few typos and a confusing notation changed; several clarifications, references added, to appear in CQ

    New coordinates for a simpler canonical derivation of the Hawking effect

    Full text link
    In order to achieve a Hamiltonian-based canonical derivation of the Hawking effect, one usually faces multiple hurdles. Firstly, the spacetime foliation using Schwarzschild time does not lead to hyper-surfaces which are always spacelike. Secondly, the null coordinates which are frequently used in covariant approach, do not lead to a true matter Hamiltonian. Recently, an exact canonical derivation was presented using the so-called near-null coordinates. However, there too one faces the difficulty of having to deal with non-vanishing matter diffeomorphism generator as the spatial decomposition involves a non-zero shift vector. Here we introduce a new set of coordinates which allows one to perform an exact canonical derivation of Hawking effect without having to deal with matter diffeomorphism generator.Comment: 6 pages, 1 figure, revtex

    Loop quantum gravity corrections to gravitational wave dispersion

    Full text link
    Cosmological tensor perturbations equations are derived for Hamiltonian cosmology based on Ashtekar's formulation of general relativity, including typical quantum gravity effects in the Hamiltonian constraint as they are expected from loop quantum gravity. This translates to corrections of the dispersion relation for gravitational waves. The main application here is the preservation of causality which is shown to be realized due to the absence of anomalies in the effective constraint algebra used.Comment: 27 page
    corecore