473 research outputs found

    The Immune Response to Melanoma Is Limited by Thymic Selection of Self-Antigens

    Get PDF
    The expression of melanoma-associated antigens (MAA) being limited to normal melanocytes and melanomas, MAAs are ideal targets for immunotherapy and melanoma vaccines. As MAAs are derived from self, immune responses to these may be limited by thymic tolerance. The extent to which self-tolerance prevents efficient immune responses to MAAs remains unknown. The autoimmune regulator (AIRE) controls the expression of tissue-specific self-antigens in thymic epithelial cells (TECs). The level of antigens expressed in the TECs determines the fate of auto-reactive thymocytes. Deficiency in AIRE leads in both humans (APECED patients) and mice to enlarged autoreactive immune repertoires. Here we show increased IgG levels to melanoma cells in APECED patients correlating with autoimmune skin features. Similarly, the enlarged T cell repertoire in AIRE−/− mice enables them to mount anti-MAA and anti-melanoma responses as shown by increased anti-melanoma antibodies, and enhanced CD4+ and MAA-specific CD8+ T cell responses after melanoma challenge. We show that thymic expression of gp100 is under the control of AIRE, leading to increased gp100-specific CD8+ T cell frequencies in AIRE−/− mice. TRP-2 (tyrosinase-related protein), on the other hand, is absent from TECs and consequently TRP-2 specific CD8+ T cells were found in both AIRE−/− and AIRE+/+ mice. This study emphasizes the importance of investigating thymic expression of self-antigens prior to their inclusion in vaccination and immunotherapy strategies

    Study Protocol - Accurate assessment of kidney function in Indigenous Australians: aims and methods of the eGFR Study

    Get PDF
    Background: There is an overwhelming burden of cardiovascular disease, type 2 diabetes and chronic kidney disease among Indigenous Australians. In this high risk population, it is vital that we are able to measure accurately kidney function. Glomerular filtration rate is the best overall marker of kidney function. However, differences in body build and body composition between Indigenous and non-Indigenous Australians suggest that creatinine-based estimates of glomerular filtration rate derived for European populations may not be appropriate for Indigenous Australians. The burden of kidney disease is borne disproportionately by Indigenous Australians in central and northern Australia, and there is significant heterogeneity in body build and composition within and amongst these groups. This heterogeneity might differentially affect the accuracy of estimation of glomerular filtration rate between different Indigenous groups. By assessing kidney function in Indigenous Australians from Northern Queensland, Northern Territory and Western Australia, we aim to determine a validated and practical measure of glomerular filtration rate suitable for use in all Indigenous Australians

    Reduced Physiological Complexity in Robust Elderly Adults with the APOE ε4 Allele

    Get PDF
    BACKGROUND:It is unclear whether the loss of physiological complexity during the aging process is due to genetic variations. The APOE gene has been studied extensively in regard to its relationship with aging-associated medical illness. We hypothesize that diminished physiological complexity, as measured by heart rate variability, is influenced by polymorphisms in the APOE allele among elderly individuals. METHODOLOGY/PRINCIPAL FINDINGS:A total of 102 robust, non-demented, elderly subjects with normal functions of daily activities participated in this study (97 males and 5 females, aged 79.2+/-4.4 years, range 72-92 years). Among these individuals, the following two APOE genotypes were represented: epsilon4 non-carriers (n = 87, 85.3%) and epsilon4 carriers (n = 15, 14.7%). Multi-scale entropy (MSE), an analysis used in quantifying complexity for nonlinear time series, was employed to analyze heart-rate dynamics. Reduced physiological complexity, as measured by MSE, was significantly associated with the presence of the APOE epsilon4 allele in healthy elderly subjects, as compared to APOE epsilon4 allele non-carriers (24.6+/-5.5 versus 28.9+/-5.2, F = 9.429, p = 0.003, respectively). CONCLUSIONS/SIGNIFICANCE:This finding suggests a role for the APOE gene in the diminished physiological complexity seen in elderly populations

    Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Thecostraca are arguably the most morphologically and biologically variable group within the Crustacea, including both suspension feeders (Cirripedia: Thoracica and Acrothoracica) and parasitic forms (Cirripedia: Rhizocephala, Ascothoracida and Facetotecta). Similarities between the metamorphosis found in the Facetotecta and Rhizocephala suggests a common evolutionary origin, but until now no comprehensive study has looked at the basic evolution of these thecostracan groups.</p> <p>Results</p> <p>To this end, we collected DNA sequences from three nuclear genes [18S rRNA (2,305), 28S rRNA (2,402), Histone H3 (328)] and 41 larval characters in seven facetotectans, five ascothoracidans, three acrothoracicans, 25 rhizocephalans and 39 thoracicans (ingroup) and 12 Malacostraca and 10 Copepoda (outgroup). Maximum parsimony, maximum likelihood and Bayesian analyses showed the Facetotecta, Ascothoracida and Cirripedia each as monophyletic. The better resolved and highly supported DNA maximum likelihood and morphological-DNA Bayesian analysis trees depicted the main phylogenetic relationships within the Thecostraca as (Facetotecta, (Ascothoracida, (Acrothoracica, (Rhizocephala, Thoracica)))).</p> <p>Conclusion</p> <p>Our analyses indicate a convergent evolution of the very similar and highly reduced slug-shaped stages found during metamorphosis of both the Rhizocephala and the Facetotecta. This provides a remarkable case of convergent evolution and implies that the advanced endoparasitic mode of life known from the Rhizocephala and strongly indicated for the Facetotecta had no common origin. Future analyses are needed to determine whether the most recent common ancestor of the Thecostraca was free-living or some primitive form of ectoparasite.</p

    Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress

    Get PDF
    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700–900 kPa and ∼100–300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate relationship between structure/flexibility and charge of bacterial envelope and propensity of bacterium and surface appendages to contract under hypertonic conditions

    Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesOver the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15).We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls).We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10(-6)). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23.This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.National Institutes of Mental Health (NIMH, USA) ACE Network Autism Genetic Resource Exchange (AGRE) is a program of Autism Speaks (USA) The Autism Genome Project (AGP) from Autism Speaks (USA) Canadian Institutes of Health Research (CIHR), Genome Canada Health Research Board (Ireland) Hilibrand Foundation (USA) Medical Research Council (UK) National Institutes of Health (USA) Ontario Genomics Institute University of Toronto McLaughlin Centre Simons Foundation Johns Hopkins Autism Consortium of Boston NLM Family foundation National Institute of Health grants National Health Medical Research Council Scottish Rite Spunk Fund, Inc. Rebecca and Solomon Baker Fund APEX Foundation National Alliance for Research in Schizophrenia and Affective Disorders (NARSAD) endowment fund of the Nancy Pritzker Laboratory (Stanford) Autism Society of America Janet M. Grace Pervasive Developmental Disorders Fund The Lundbeck Foundation universities and university hospitals of Aarhus and Copenhagen Stanley Foundation Centers for Disease Control and Prevention (CDC) Netherlands Scientific Organization Dutch Brain Foundation VU University Amsterdam Trinity Centre for High Performance Computing through Science Foundation Ireland Autism Genome Project (AGP) from Autism Speak

    Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders

    Get PDF
    Autism spectrum disorder (ASD) risk is influenced by common polygenic and de novo variation. We aimed to clarify the influence of polygenic risk for ASD and to identify subgroups of ASD cases, including those with strongly acting de novo variants, in which polygenic risk is relevant. Using a novel approach called the polygenic transmission disequilibrium test and data from 6,454 families with a child with ASD, we show that polygenic risk for ASD, schizophrenia, and greater educational attainment is over-transmitted to children with ASD. These findings hold independent of proband IQ. We find that polygenic variation contributes additively to risk in ASD cases who carry a strongly acting de novo variant. Lastly, we show that elements of polygenic risk are independent and differ in their relationship with phenotype. These results confirm that the genetic influences on ASD are additive and suggest that they create risk through at least partially distinct etiologic pathways
    corecore