4,309 research outputs found
Universality in edge-source diffusion dynamics
We show that in edge-source diffusion dynamics the integrated concentration
N(t) has a universal dependence with a characteristic time-scale tau=(A/P)^2
pi/(4D), where D is the diffusion constant while A and P are the
cross-sectional area and perimeter of the domain, respectively. For the
short-time dynamics we find a universal square-root asymptotic dependence
N(t)=N0 sqrt(t/tau) while in the long-time dynamics N(t) saturates
exponentially at N0. The exponential saturation is a general feature while the
associated coefficients are weakly geometry dependent.Comment: 4 pages including 4 figures. Minor changes. Accepted for PR
Best combiners during 40 years of breeding Vitis cuitivars resistant to Pierce's disease
By breeding for resistance to Pierce's disease in Vitis we have obtained useful cultivars that can be grown productively in areas formerly considered unsuitable for grape production. Reviewing the most successful recombinants from crosses made between 1945 and 1984, 6 Vitis clones were prominent foundation parents among those tested as primitive resistant germplasm: V. aestivalis, ssp. smalliana cvs Fla. 43-47 and Fla. 449, V. aestivalis ssp. simpsoni cvs Pixiola and Fla. 451, and V. shuttleworthii cvs Haines City and Kissimmee. The best combiners for productivity, fruit size, and high quality were PD susceptible cultivars Aurelia, Carolina Blackrose, Cardinal, Exotic, Golden Muscat, and Villard blanc. The best combiners for seedlessness and early ripening were susceptible cultivars Lakemont and Perlette. Selection for resistance to PD required 7 or more years each generation for exposure of seedlings to PD-carrying vectors. Inbreeding was detrimental to vine vigor but good combiners were selected among inbred progeny which were more homozygous for disease resistance. Subsequent crosses of these inbreds to large-fruited, high-quality cultivars resulted in some recombinants with restored vigor and superior traits such as Blanc Du Bois
Transport coefficients for electrolytes in arbitrarily shaped nano and micro-fluidic channels
We consider laminar flow of incompressible electrolytes in long, straight
channels driven by pressure and electro-osmosis. We use a Hilbert space
eigenfunction expansion to address the general problem of an arbitrary cross
section and obtain general results in linear-response theory for the hydraulic
and electrical transport coefficients which satisfy Onsager relations. In the
limit of non-overlapping Debye layers the transport coefficients are simply
expressed in terms of parameters of the electrolyte as well as the geometrical
correction factor for the Hagen-Poiseuille part of the problem. In particular,
we consider the limits of thin non-overlapping as well as strongly overlapping
Debye layers, respectively, and calculate the corrections to the hydraulic
resistance due to electro-hydrodynamic interactions.Comment: 13 pages including 4 figures and 1 table. Typos corrected. Accepted
for NJ
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals
is theoretically studied. Using a scattering-matrix approach and the
Wigner-Smith delay time concept, we show that optical absorbance benefits both
from slow-light phenomena as well as a high filling factor of the energy
residing in the liquid. Utilizing strongly dispersive photonic crystal
structures, we numerically demonstrate how liquid-infiltrated photonic crystals
facilitate enhanced light-matter interactions, by potentially up to an order of
magnitude. The proposed concept provides strong opportunities for improving
existing miniaturized absorbance cells for optical detection in lab-on-a-chip
systems.Comment: Paper accepted for the "Special Issue OWTNM 2007" edited by A.
Lavrinenko and P. J. Robert
Levitated droplet dye laser
We present the first observation, to our knowledge, of lasing from a
levitated, dye droplet. The levitated droplets are created by computer
controlled pico-liter dispensing into one of the nodes of a standing ultrasonic
wave (100 kHz), where the droplet is trapped. The free hanging droplet forms a
high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine
6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are
optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser,
and the dye laser emission is analyzed by a fixed grating spectrometer. With
this setup we have achieved reproducible lasing spectra in the visible
wavelength range from 610 nm to 650 nm. The levitated droplet technique has
previously successfully been applied for a variety of bio-analytical
applications at single cell level. In combination with the lasing droplets, the
capability of this high precision setup has potential applications within
highly sensitive intra-cavity absorbance detection.Comment: 6 pages including 3 figure
Frequency response in surface-potential driven electro-hydrodynamics
Using a Fourier approach we offer a general solution to calculations of slip
velocity within the circuit description of the electro-hydrodynamics in a
binary electrolyte confined by a plane surface with a modulated surface
potential. We consider the case with a spatially constant intrinsic surface
capacitance where the net flow rate is in general zero while harmonic rolls as
well as time-averaged vortex-like components may exist depending on the spatial
symmetry and extension of the surface potential. In general the system displays
a resonance behavior at a frequency corresponding to the inverse RC time of the
system. Different surface potentials share the common feature that the
resonance frequency is inversely proportional to the characteristic length
scale of the surface potential. For the asymptotic frequency dependence above
resonance we find a 1/omega^2 power law for surface potentials with either an
even or an odd symmetry. Below resonance we also find a power law omega^alpha
with alpha being positive and dependent of the properties of the surface
potential. Comparing a tanh potential and a sech potential we qualitatively
find the same slip velocity, but for the below-resonance frequency response the
two potentials display different power law asymptotics with alpha=1 and
alpha~2, respectively.Comment: 4 pages including 1 figure. Accepted for PR
A real-space grid implementation of the Projector Augmented Wave method
A grid-based real-space implementation of the Projector Augmented Wave (PAW)
method of P. E. Blochl [Phys. Rev. B 50, 17953 (1994)] for Density Functional
Theory (DFT) calculations is presented. The use of uniform 3D real-space grids
for representing wave functions, densities and potentials allows for flexible
boundary conditions, efficient multigrid algorithms for solving Poisson and
Kohn-Sham equations, and efficient parallelization using simple real-space
domain-decomposition. We use the PAW method to perform all-electron
calculations in the frozen core approximation, with smooth valence wave
functions that can be represented on relatively coarse grids. We demonstrate
the accuracy of the method by calculating the atomization energies of twenty
small molecules, and the bulk modulus and lattice constants of bulk aluminum.
We show that the approach in terms of computational efficiency is comparable to
standard plane-wave methods, but the memory requirements are higher.Comment: 13 pages, 3 figures, accepted for publication in Physical Review
- …