85 research outputs found

    Industrial Wastewater Treatment by Nanofiltration – A Case Study on the Anodizing Industry

    Get PDF
    The anodizing industry generates several alkaline and acidic wastewater streams often with high concentrations of heavy metals. In this study, nanofiltration (NF) was used to treat wastewater from individual baths, i.e., wastewater from color rinse, alkaline pickling rinse, acidic pickling rinse and anodizing rinse, as well as a mixture of all the wastewater streams. The experiments were carried out by using a commercial membrane (NF99HF) exhibiting pure water permeability of 10 L/(m2·h·bar). For all wastewater streams except one, pH was adjusted to bring it within the recommended pH limits of the membrane, whereby part of the heavy metals precipitated and was removed. The NF of the color rinse offered high-quality permeate (heavy metals below detection limit) and high permeability (9 L/(m2·h·bar)), whereas the nanofiltration of the alkaline pickling rinse exhibited no permeability. The NF of the acidic pickling rinse showed a permeability of 3.1–4.1 L/(m2·h·bar), but low ion rejection (7–13%). NF of the neutralized mixed wastewater, after the removal of precipitate, produced high-quality permeate with a stable permeability of 1 L/(m2·h·bar). Treatment of the mixed wastewater is therefore the best option if the water has to be discharged. If the water has to be reused, the permeate conductivity in the color rinse and anodizing rinse baths have been reduced significantly, so the treatment of these streams may then be a better option

    Treatment of wastewater solutions from anodizing industry by membrane distillation and membrane crystallization

    Get PDF
    The treatment of wastewater containing various metal ions is a challenging issue in the anodizing industry. The current study investigates the application of membrane distillation/crystallization (MD/MCr) for the simultaneous recovery of freshwater and sodium sulfate from wastewater originating from a Danish anodizing industry. MD/MCr experiments were performed on supernatant from wastewater obtained after centrifugation. The effect of various feed temperatures and cross-flow velocities on flux and crystal characteristics was investigated. The crystal growth in the feed tank was monitored through the use of an online PaticleView microscope. The crystals’ morphology and form were determined by using scanning electron microscope (SEM) and X-ray powder diffraction (XRD), respectively, while inductively coupled plasma (ICP) was applied to determine the purity of the obtained crystals. The weight and dimensions of the MD/MCr unit that were required to treat the specific amount of wastewater were evaluated as a function of the feed inlet temperature. It was demonstrated that the application of MCr allows extracting high-purity sodium sulfate crystals and more than 80% freshwater from the wastewater
    corecore