58 research outputs found

    Computational evidence for hundreds of non-conserved plant microRNAs

    Get PDF
    BACKGROUND: MicroRNAs (miRNA) are small (20–25 nt) non-coding RNA molecules that regulate gene expression through interaction with mRNA in plants and metazoans. A few hundred miRNAs are known or predicted, and most of those are evolutionarily conserved. In general plant miRNA are different from their animal counterpart: most plant miRNAs show near perfect complementarity to their targets. Exploiting this complementarity we have developed a method for identification plant miRNAs that does not rely on phylogenetic conservation. RESULTS: Using the presumed targets for the known miRNA as positive controls, we list and filter all segments of the genome of length ~20 that are complementary to a target mRNA-transcript. From the positive control we recover 41 (of 92 possible) of the already known miRNA-genes (representing 14 of 16 families) with only four false positives. Applying the procedure to find possible new miRNAs targeting any annotated mRNA, we predict of 592 new miRNA genes, many of which are not conserved in other plant genomes. A subset of our predicted miRNAs is additionally supported by having more than one target that are not homologues. CONCLUSION: These results indicate that it is possible to reliably predict miRNA-genes without using genome comparisons. Furthermore it suggests that the number of plant miRNAs have been underestimated and points to the existence of recently evolved miRNAs in Arabidopsis

    Managing the sequence-specificity of antisense oligonucleotides in drug discovery

    Get PDF
    All drugs perturb the expression of many genes in the cells that are exposed to them. These gene expression changes can be divided into effects resulting from engaging the intended target and effects resulting from engaging unintended targets. For antisense oligonucleotides, developments in bioinformatics algorithms, and the quality of sequence databases, allow oligonucleotide sequences to be analyzed computationally, in terms of the predictability of their interactions with intended and unintended RNA targets. Applying these tools enables selection of sequence-specific oligonucleotides where no- or only few unintended RNA targets are expected. To evaluate oligonucleotide sequence-specificity experimentally, we recommend a transcriptomics protocol where two or more oligonucleotides targeting the same RNA molecule, but with entirely different sequences, are evaluated together. This helps to clarify which changes in cellular RNA levels result from downstream processes of engaging the intended target, and which are likely to be related to engaging unintended targets. As required for all classes of drugs, the toxic potential of oligonucleotides must be evaluated in cell- and animal models before clinical testing. Since potential adverse effects related to unintended targeting are sequence-dependent and therefore species-specific, in vitro toxicology assays in human cells are especially relevant in oligonucleotide drug discovery

    Inhibition of microRNA function by antimiR oligonucleotides

    Get PDF
    MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression in many developmental and cellular processes. Moreover, there is now ample evidence that perturbations in the levels of individual or entire families of miRNAs are strongly associated with the pathogenesis of a wide range of human diseases. Indeed, disease-associated miRNAs represent a new class of targets for the development of miRNA-based therapeutic modalities, which may yield patient benefits unobtainable by other therapeutic approaches. The recent explosion in miRNA research has accelerated the development of several computational and experimental approaches for probing miRNA functions in cell culture and in vivo. In this review, we focus on the use of antisense oligonucleotides (antimiRs) in miRNA inhibition for loss-of-function studies. We provide an overview of the currently employed antisense chemistries and their utility in designing antimiR oligonucleotides. Furthermore, we describe the most commonly used in vivo delivery strategies and discuss different approaches for assessment of miRNA inhibition and potential off-target effects. Finally, we summarize recent progress in antimiR mediated pharmacological inhibition of disease-associated miRNAs, which shows great promise in the development of novel miRNA-based therapeutics

    A kinetic model explains why shorter and less affine enzyme-recruiting oligonucleotides can be more potent

    Get PDF
    Antisense oligonucleotides complementary to RNA targets promise generality and ease of drug design. The first systemically administered antisense drug was recently approved for treatment and others are in clinical development. Chemical modifications that increase the hybridization affinity of oligonucleotides are reasoned to confer higher potency, i.e., modified oligonucleotides can be dosed at lower concentrations to achieve the same effect. Surprisingly, shorter and less affine oligonucleotides sometimes display increased potency. To explain this apparent contradiction, increased uptake or decreased propensity to form structures have been suggested as possible mechanisms. Here, we provide an alternative explanation that invokes only the kinetics behind oligonucleotide-mediated cleavage of RNA targets. A model based on the law of mass action predicts, and experiments support, the existence of an optimal binding affinity. Exaggerated affinity, and not length per se, is detrimental to potency. This finding clarifies how to optimally apply high-affinity modifications in the discovery of potent antisense oligonucleotide drugs

    Intragenomic Matching Reveals a Huge Potential for miRNA-Mediated Regulation in Plants

    Get PDF
    microRNAs (miRNAs) are important post-transcriptional regulators, but the extent of this regulation is uncertain, both with regard to the number of miRNA genes and their targets. Using an algorithm based on intragenomic matching of potential miRNAs and their targets coupled with support vector machine classification of miRNA precursors, we explore the potential for regulation by miRNAs in three plant genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. We find that the intragenomic matching in conjunction with a supervised learning approach contains enough information to allow reliable computational prediction of miRNA candidates without requiring conservation across species. Using this method, we identify ∼1,200, ∼2,500, and ∼2,100 miRNA candidate genes capable of extensive base-pairing to potential target mRNAs in A. thaliana, P. trichocarpa, and O. sativa, respectively. This is more than five times the number of currently annotated miRNAs in the plants. Many of these candidates are derived from repeat regions, yet they seem to contain the features necessary for correct processing by the miRNA machinery. Conservation analysis indicates that only a few of the candidates are conserved between the species. We conclude that there is a large potential for miRNA-mediated regulatory interactions encoded in the genomes of the investigated plants. We hypothesize that some of these interactions may be realized under special environmental conditions, while others can readily be recruited when organisms diverge and adapt to new niches

    Quantum Mechanical Studies of DNA and LNA

    Get PDF
    Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs

    Dissecting the target specificity of RNase H recruiting oligonucleotides using massively parallel reporter analysis of short RNA motifs

    Get PDF
    Processing and post-transcriptional regulation of RNA often depend on binding of regulatory molecules to short motifs in RNA. The effects of such interactions are difficult to study, because most regulatory molecules recognize partially degenerate RNA motifs, embedded in a sequence context specific for each RNA. Here, we describe Library Sequencing (LibSeq), an accurate massively parallel reporter method for completely characterizing the regulatory potential of thousands of short RNA sequences in a specific context. By sequencing cDNA derived from a plasmid library expressing identical reporter genes except for a degenerate 7mer subsequence in the 3′UTR, the regulatory effects of each 7mer can be determined. We show that LibSeq identifies regulatory motifs used by RNA-binding proteins and microRNAs. We furthermore apply the method to cells transfected with RNase H recruiting oligonucleotides to obtain quantitative information for >15000 potential target sequences in parallel. These comprehensive datasets provide insights into the specificity requirements of RNase H and allow a specificity measure to be calculated for each tested oligonucleotide. Moreover, we show that inclusion of chemical modifications in the central part of an RNase H recruiting oligonucleotide can increase its sequence-specificity

    Therapeutic silencing of microRNA-122 in primates with chronic hepatitis

    Get PDF
    Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide with over 170 million infected individuals who are at greatly increased risk of developing liver failure and hepatocellular carcinoma. The current standard anti-HCV therapy, which combines pegylated interferon-α (IFN-α) with ribavirin provides sustained clearance of HCV in only about 50% of patients and is often associated with serious side effects (1, 2). Therapies that target essential host functions for HCV may provide a high barrier to resistance and, thus, could present an effective approach for the development of new HCV antiviral drugs. MicroRNA-122 (miR-122) is a highly abundant, liver-expressed microRNA, which binds to two closely spaced target sites in the 5' non-coding region (NCR) of the HCV genome, resulting in upregulation of viral RNA levels (3, 4). Interaction of miR-122 with the HCV genome is essential for accumulation of viral RNA in cultured liver cells and both target sites are required for modulation of HCV RNA abundance (3-5). Previously, we reported on potent and specific miR-122 silencing in vivo using a LNA-modified phosphorothioate oligonucleotide (SPC3649) complementary to the 5'-end of miR-122 leading to long-lasting decrease of serum cholesterol in mice and African green monkeys (6). Here, we investigated the potential of miR-122 antagonism by SPC3649 as a new anti-HCV therapy in chronically infected chimpanzees (genotype 1). Baseline measurements were obtained from four chimpanzees for four weeks, the last two of which included an intravenous (i.v.) placebo dose of saline. Two animals each were assigned to the high and low dose groups, 5 and 1 mg kg -1 , respectively, and were treated with i.v. injections of SPC3649 on a weekly basis for 12 week
    corecore