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ABSTRACT

All drugs perturb the expression of many genes in
the cells that are exposed to them. These gene ex-
pression changes can be divided into effects result-
ing from engaging the intended target and effects
resulting from engaging unintended targets. For
antisense oligonucleotides, developments in bioin-
formatics algorithms, and the quality of sequence
databases, allow oligonucleotide sequences to be
analyzed computationally, in terms of the predictabil-
ity of their interactions with intended and unintended
RNA targets. Applying these tools enables selection
of sequence-specific oligonucleotides where no- or
only few unintended RNA targets are expected. To
evaluate oligonucleotide sequence-specificity exper-
imentally, we recommend a transcriptomics proto-
col where two or more oligonucleotides targeting the
same RNA molecule, but with entirely different se-
quences, are evaluated together. This helps to clar-
ify which changes in cellular RNA levels result from
downstream processes of engaging the intended tar-
get, and which are likely to be related to engaging
unintended targets. As required for all classes of
drugs, the toxic potential of oligonucleotides must
be evaluated in cell- and animal models before clini-
cal testing. Since potential adverse effects related to
unintended targeting are sequence-dependent and
therefore species-specific, in vitro toxicology assays
in human cells are especially relevant in oligonu-
cleotide drug discovery.

INTRODUCTION

Hypothesis-driven drug discovery is based on the premise
that disease states can be modulated in a desirable man-
ner by perturbing the function of carefully chosen molec-
ular targets. It is therefore a pragmatic goal of drug discov-
ery to ensure that the chemical compounds developed in-
teract specifically with their intended biomolecular targets
and do not perturb the functions of any other molecules. In
essence, the fewer unintended targets a compound has, the
less likely it is to have adverse events related to unintended
targeting. Indeed, recent experiments in mice suggest that
the number of unintended RNA targets that are effectively
reduced in the liver after systemic administration of anti-
sense oligonucleotides (AONs), can be correlated with the
hepatotoxic potential of the oligonucleotides, as measured
using biochemical markers in the blood (1–3). In addition,
highly specific compounds developed during such discov-
ery efforts can help to identify the effects of modulating the
intended target more clearly.

All drugs modulate cellular processes that affect the tran-
scriptome

Highly specific drugs acting exclusively on their intended
target, as well as those that also have a number of unin-
tended targets, will, as a consequence of their downstream
effects, eventually have an impact on the expression of mul-
tiple genes that are themselves not directly targeted. This
can be measured using global transcriptome analysis in a
straightforward manner. As an example, we retrieved gene
expression profiles from the connectivity map (4), a public
data resource containing information on the transcriptome
changes in cells induced by 1309 small molecule compounds
(SMCs) and other bioactive molecules. These profiles of
drug-induced transcript-level changes have been used to un-
cover new effects of known drugs, which have subsequently
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been experimentally verified (5). A simple, high level anal-
ysis of the 315 Food and Drug Administration (FDA)-
approved SMC drugs in this dataset (Supplementary Table
S1) reveals that most of these drugs, when given at phar-
macologically relevant doses, change the expression level of
between 25 and 130 genes by >50% (first and third quartiles,
respectively), with the median being ∼60 genes (see Fig-
ure 1A). Notably, anti-parasitic and oncology drugs tend to
have a larger impact than other classes of drugs, with a me-
dian of ∼140 genes, and are therefore presented separately
in Figure 1A.

We wanted to compare the transcriptome profiles for
small molecules to those for AONs. AONs are short, single-
stranded, DNA molecules that have been chemically modi-
fied to confer drug-like properties. They modulate the func-
tion of their RNA targets through various post-binding
mechanisms such as protein blocking or RNase H-mediated
cleavage. We therefore retrieved transcriptome data from
public repositories for 25 AONs (Supplementary Table
S2). The AONs were assayed under conditions similar to
those for the SMCs featured in the connectivity map. We
found that the AONs elicit transcriptome changes in the
same range as non-antiparasitic and non-oncology FDA-
approved drugs (median of ∼50 genes), as shown in Fig-
ure 1A. This suggests that the gross impact on the tran-
scriptome is similar for AONs and approved SMCs, even
though oligonucleotides can potentially affect RNA di-
rectly, whereas small molecules presumably have more indi-
rect effects on transcript levels. That is, all drugs modulate
cellular processes that eventually affect the transcriptome.

It also follows from this analysis that the potential for tox-
icological effects, derived from intracellular binding events
that perturb the transcriptome, is not different for oligonu-
cleotides and approved small molecules. The same thor-
ough preclinical toxicological studies must therefore be per-
formed for oligonucleotides as for other drug classes (6).

Oligonucleotide specificity can be evaluated using sequence
analysis and transcriptomics

AON interactions with unintended targets are typically di-
vided into hybridization-dependent interactions with RNA,
and hybridization-independent interactions with proteins
(7) (Figure 1B). The hybridization-independent interactions
are often related to AONs with a phosphorothioate back-
bone. Indeed, interactions with intracellular proteins (8),
plasma proteins (9), cell surface proteins (10–12) growth
factor proteins (13), or with components of the immune
system (14), are examples of hybridization-independent
interactions that have been observed for some oligonu-
cleotides with phosphorothioate backbones. In fact, a class
of oligonucleotides termed aptamers with protein-specific
binding properties can be produced through an in vitro se-
lection process. As has been reviewed elsewhere (15,16),
such aptamers can modulate the activity of the proteins
they specifically bind to and provide therapeutic benefit. As
with some small molecule pharmacophores, hybridization-
independent interactions between some AONs and specific
proteins can also lead to unwanted toxicities (Figure 1B)
(7,9,17). Here, we will focus on those AONs termed gap-
mers that can cleave RNA by recruiting RNase H, and

discuss methods for evaluating hybridization-dependent ef-
fects on unintended RNA targets. The sequence-specificity
of siRNAs has been reviewed elsewhere (18,19). As will be
reviewed here, the sequence-specificity of gapmers differs
markedly from that of siRNAs. Contrary to most other
drug modalities, AONs have advantages in terms of both
the computational predictability and experimental measur-
ability of unintended targets. The sequences of both AONs
and RNA are composed of a small set of different nu-
cleotides, and can be analysed using methods from the
most mature of all bioinformatic subdisciplines, sequence
analysis (20). Moreover, the predictable binding proper-
ties of any nucleic acid through Watson–Crick base pair-
ing have facilitated the development of quantitative mea-
surement methods such as qRT-PCR (21), rapid amplifi-
cation of cDNA ends (RACE) (22,23), serial analysis of
gene expression (24), microarrays (25), and RNA sequenc-
ing (26), which allows cost-effective measurements of the
global transcriptome, including all unintended RNA tar-
gets. Although small molecules and oligonucleotides appear
to impact the transcriptome to the same degree (Figure 1A),
computational and experimental methods therefore exist
for oligonucleotides that allow discrimination between ef-
fects on intended and unintended RNA targets, as well as
their respective downstream secondary effects (Figure 1B),
enabling a more precise assessment of specificity.

Defining specificity

For gapmers we divide effects from unintended RNA tar-
gets into those which are subject to the same mechanism as
the intended effect (here RNase H-induced target degrada-
tion) and those where hybridization to the unintended tar-
get elicits effects through other mechanisms (such as splice
modulation, blocking of binding sites for microRNAs or
RNA binding proteins, and more). We expect degradation
of unintended RNA targets to be the dominating mecha-
nism influencing the specificity of gapmers (see the subsec-
tion headed “Specificity of the same gapmer for different
targets”), and we focus on this mechanism here. In this case,
specificity can be defined as the rate of cleavage of the in-
tended RNA target, Vint, relative to the rate of cleavage of
all other, unintended, RNA targets (27,28):

Vint
∑

i∈unint Vi
(definition based on rates)

When cleavage rates cannot be easily measured or inferred,
specificity can alternatively be defined as the ratio between
the total number of different RNA targets reduced be-
low some pre-determined level after treatment, Nreduced, in-
tended as well as unintended, relative to all RNA molecules
measured, Nmeasured:

Nreduced

Nmeasured
(definition based on counts)

This definition of specificity was originally proposed for ki-
nase inhibitors interacting with panels of protein kinases
in competition binding assays (29). Both definitions of se-
quence specificity are dependent on the concentration of
gapmer used. When using either of these definitions for cal-
culating specificity, we therefore suggest the evaluation of
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Figure 1. All drugs affect the transcriptome. (A) Global transcriptome effects in vitro upon treatment with drugs. Microarray data for 25 antisense oligonu-
cleotides (AONs) were retrieved from public repositories (Supplementary Table S2), and for 315 FDA-approved small molecule compounds (SMCs) from
the connectivity map repository (4) (Supplementary Table S1). Analysis of the SMCs revealed that those with first level Anatomical Therapeutic Chem-
ical codes L (antineoplastic and immunomodulating agents) and P (antiparasitic products) affected significantly more genes than the others (P < 0.001,
Wilcoxon test). They are therefore shown in a separate column. Both AONs and SMCs were typically evaluated at several different doses and in multiple
cell lines (Supplementary Tables S1 and S2). For this analysis, all microarray data were preprocessed in the same manner, using robust multiarray averaging
(129). Data from each study were preprocessed individually, except for the connectivity map data, where each SMC with its designated vehicle controls was
preprocessed individually. Microarray data derived from seven different Affymetrix platforms. To allow comparisons across microarray types, a set of 11
367 genes assayed on all platforms was identified and the number of genes that changed expression by >50% in this common set of genes was calculated
for each AON or SMC. (B) Schematic connecting drugs with their primary intended and unintended targets and the net downstream secondary effects.
Here, we only consider RNA molecules as intended targets of AONs, and proteins as intended targets of small molecule compounds. In principle, and as
unintended targets, AON binding to proteins and SMC binding to RNAs are also possible.

several different concentrations to choose the concentration
that best allows discrimination between different gapmers.

To compare the two definitions, let us say that two differ-
ent gapmers each reduce an unintended target to the same
extent, but reduce the intended target to different extents.
According to the definition based on cleavage rates, the gap-
mer that reduces the intended target the most will be the
one judged as the most specific. However, from the defini-
tion based on counting the number of targets reduced, if the
threshold level of reduction has not been chosen carefully,
the two gapmers could be judged as being equally specific.
Conversely, say that for two different gapmers, one reduces a
single unintended target to the same extent as the intended
target, whereas the other reduces two unintended targets,
but only half as much as the intended target. The specificity
definition based on cleavage rates would rank the two gap-
mers as equally specific, whereas the counting-based def-
inition would rank the gapmer with only one unintended
target as the most specific.

Pragmatically, the definition based on counts is the one
most easily applied to transcriptomics studies, the main way
of studying gapmer specificity, and will therefore be the def-
inition of choice in most cases. As defined above, however,
it does not differentiate between intended and unintended
targets. Many of the RNAs measured as reduced, and there-
fore contributing to Nreduced, may not be unintended targets,
but merely secondary effects of engaging the intended tar-
get. It will therefore be more precise to only count the subset
of reduced RNAs that are indeed unintended targets. Meth-
ods for identifying this subset in transcriptomics studies are
discussed further in Section 3.2. Furthermore, as discussed
above, the introduction of a threshold level of reduction is
somewhat arbitrary. It may, in many cases, be helpful to
consider the magnitude of the difference between the effect
on the intended target and the unintended targets. For ex-
ample, by measuring the knockdown of the intended target
and unintended targets at multiple gapmer concentrations,
so that it can be estimated at which concentrations half-



Nucleic Acids Research, 2017, Vol. 45, No. 5 2265

maximal effects are achieved on both intended and unin-
tended targets, EC50int and EC50unint, respectively, a speci-
ficity definition based on such potency estimations could be

EC50int
∑

i∈unint EC50i
(definition based on potency)

In the subsections headed “RNA target dynamics” and
“Target degradation by RNase H”, the concepts of gapmer
potency and EC50 estimations are discussed further.

Clearly, the definition of specificity matters when decid-
ing how to optimize for it in discovery projects. As a final
remark, for experimental biologists working with oligonu-
cleotide probe hybridization to membrane-bound RNA or
DNA (30), stringency is another often-used term to denote
the extent to which hybridization can occur between nucleic
acids with mismatched sequences. When washing at high-
stringency conditions, typically achieved by reducing salt
concentrations or increasing temperature, one can ensure
that only nucleic acids that are perfectly complementary to
each other will hybridize. Conversely, under low-stringency
conditions, nucleic acids can hybridize despite some base
mismatches. In contrast to the many experimental variables
that can be changed to approach high-stringency conditions
in such experiments, when dealing with oligonucleotides
in animals or humans, it is only variables in the oligonu-
cleotide itself that may be altered to ensure that mostly nu-
cleic acids that are perfectly complementary to each other
will hybridize. This is the reason we do not use the term
stringency in this review, but focus on the inherent vari-
ables that influence such sequence-specificity of oligonu-
cleotides. Also, in contrast to stringency, when considering
the sequence-specificity of gapmers, the properties of the
duplex between gapmer and RNA as a substrate for the
RNase H enzyme also matters, as discussed in the next sec-
tion.

DETERMINANTS FOR RNASE H-ACTIVITY ON UNIN-
TENDED TARGET RNA

The factors that determine gapmer activity, i.e. binding and
cleavage, at the level of the unintended target RNA are ex-
actly the same as those that determine activity at the in-
tended target RNA molecules. Hence, understanding how
to design gapmers with high activity contributes to under-
standing how to design for high specificity and vice versa.
Within the intracellular compartments where the RNA tar-
gets reside, the major factors that are known to be relevant
for gapmer binding and cleavage are summarized in Figure
2, and will be described in more detail in the following sub-
sections.

Pharmacokinetic properties, such as absorption, distri-
bution, metabolism, and excretion, which govern how much
gapmer ends up in different tissues, and in the intracellu-
lar compartments where the RNA targets reside, also af-
fect specificity. For example, a gapmer distributed to sev-
eral tissues and cell types may manifest a different sequence-
specificity in each cell type, since expression of potential un-
intended targets and their dynamical behavior can be tissue-
and cell-type specific (6). In addition, the effect of degrading
unintended targets may be highly dependent on the dura-
tion of exposure, which may also differ between tissues and

unspliced RNA

spliced RNA

Targetable sequence space

Target site accessibility

structured protein bound single-stranded

Hybridization between oligo and target

perfect match imperfect match

5’
3’5’

3’

Target dynamics

production degradation

Target degradation by RNase H

splicing and
transport

binding to duplex cleavage degradation

Figure 2. Summary of major factors affecting gapmer activity on intended
and unintended RNA targets: Targetable sequence space, target dynamics,
target site accessibility, hybridization between gapmer and target, and tar-
get degradation by RNase H. Refer to subsections in the section headed
“Determinants for RNase H-activity on unintended target RNA” for de-
tails.

cell types. Pharmacokinetic considerations may therefore
help to determine in which tissues and cell types specificity
needs to be evaluated. However, it is beyond the scope of
this review to discuss pharmacokinetics. Instead, we focus
on the properties that determine specificity once the gapmer
has reached the subcellular compartments, where RNA tar-
gets, intended and unintended, reside.

The targetable sequence space

The activity of gapmers is primarily mediated by the RNase
H1 enzyme (31). Mammalian RNase H1 is present in the
nucleus and mitochondria (32). In mouse liver, using sub-
cellular fractionation and RNase H gel renaturation assays,
RNase H1 was found to be relatively more abundant in nu-
clei than in mitochondria (33). Therefore, the most efficient
RNase H-mediated cleavage takes place in the nucleus. In-
deed, it has been demonstrated that both nuclear-retained
noncoding RNA (34) and coding RNA at both intronic and
exonic target sites (35–37) can be efficiently targeted by gap-
mers and cleaved by RNase H.
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Direct measurements of RNase H localized in the cy-
toplasm are scarce (38). However, RNase H-mediated
cleavage also takes place in the cytoplasm (39). Ex-
emplifying this, potent gapmers have been designed,
which effectively silence the hepatitis C viral RNA
genome (40), residing in the cytoplasm (41–43). Impor-
tantly, iso-sequential oligonucleotides with a locked nucleic
acid (LNA)-modification pattern not allowing RNase H-
recruitment, termed mixmers, did not reduce viral RNA, in-
dicating that the reduction was indeed mediated by RNase
H (40).

Taken together, these results demonstrate that the tran-
scriptome residing in both nucleus and cytoplasm can be
targeted by gapmers, and therefore must include both un-
spliced and spliced RNA (Figure 2).

RNA target dynamics

Cellular RNA steady-state levels are determined by the in-
terplay of RNA production, processing and degradation,
and the turnover rates of these mechanisms can vary widely
between different RNA molecules (44). Studies in mam-
malian cells have used metabolic labeling of RNA with
derivatives of uridine, such as 4-thiouridine (45) or bro-
mouridine (46), to allow capture and separation of recently
transcribed RNA from the overall RNA population, fol-
lowed by sequencing. Such transcriptome-wide evaluations
of production and degradation dynamics have revealed sig-
nificant variations between genes, as well as coordinated
and complex regulatory control in response to, for exam-
ple, lipopolysaccharide- (45) and tumor necrosis factor-
induced inflammation (46). Recruitment of RNase H to the
oligonucleotide-RNA duplex, and subsequent cleavage of
the RNA, introduces an additional mechanism by which
RNA can be degraded. This is because the two fragments of
the cleaved RNA are not protected by a 5′-cap or poly-A tail
at the cleaved ends, and they are therefore rapidly degraded
by exoribonucleases present in both nucleus and cytoplasm
(44,47). For any RNA molecule, upon introduction of such
an RNase H-mediated mechanism of degradation, the rela-
tive contribution of antisense-mediated degradation to the
overall RNA degradation naturally depends on the mag-
nitude of the endogenous degradation rate for that RNA.
That is, for targeted RNA, where the endogenous degrada-
tion rate is high, the relative contribution of the antisense-
mediated degradation will be comparatively smaller than
for targeted RNA that is degraded endogenously at a much
slower rate. This exemplifies the importance of target dy-
namics in gapmer activity. It is usually easier to discover ac-
tive gapmers against targets with a low turnover rate.

Recently, we modelled the reactions between gapmer,
RNA target and RNase H as a four-step process (48).
First, the gapmer hybridizes to the RNA target. Second, the
RNase H enzyme binds to the gapmer/RNA duplex. Third,
the enzyme cleaves the target to yield a complex of gapmer,
cleaved target and enzyme. And fourth, the complex disso-
ciates, releasing gapmer and enzyme for a new cycle, and
exposing the cleaved RNA fragments to rapid degradation
by exonucleases. This process was written as a set of ordi-
nary differential equations and solved numerically (48). In
the subsection headed “Relating overall free energy of bind-

ing with potency” below, we present a simplified version of
this model to explore the relationship between binding affin-
ity and potency. The model predicts that the endogenous
rates of RNA production and removal (Figure 2) influence
both the potency and efficacy of gapmers (48). Here, po-
tency is defined as the inverse of the concentration at which
a half-maximal knockdown effect is achieved, and efficacy
is defined as the maximal knockdown that can be achieved.
For example, keeping the target production rate constant,
an increase in the rate of endogenous target removal re-
sults in the gapmer being less efficacious and not as po-
tent. However, lowering the production rate while keeping
the endogenous removal rate constant, results in the gap-
mer being not as potent but with unchanged efficacy (48).
Any endogenous mechanism that removes RNA, so that
it is not available as a target for the gapmer, is covered by
the model (48). That is, the rate of disappearance of target
RNA matters, but the reason for this disappearance does
not. Indeed, the dominating mechanism will be different for
RNase H-mediated degradation taking place in the nucleus
and in the cytoplasm, respectively. For gapmers where the
RNase H-mediated degradation primarily takes place in the
cytoplasm, the endogenous mechanism for RNA disappear-
ance will be RNA degradation in P-bodies via ribonucle-
ases. However, for gapmers where the RNase H-mediated
degradation primarily takes place in the nucleus, the en-
dogenous mechanism for RNA disappearance will be the
processing and transport of RNA out of the nucleus.

For siRNAs, similar observations have been made based
on modeling, which have been supported to some extent by
experimental evidence (49,50). To the best of our knowl-
edge, only a single published study has investigated the ef-
fect of RNA target production rate on gapmer activity (51).
In this study, RNA levels and transcription rates were sys-
tematically varied in cells, both for an exogenous gene ex-
pressed after transfection and an endogenous gene induced
using a cytokine. Surprisingly, these variations did not ap-
pear to affect the potency of the gapmers. The gapmers used
in the study were only phosphorothioate-modified, how-
ever, and therefore of low affinity and stability. A plausi-
ble explanation for these results, which was also suggested
by the authors, may be that the number of cell-associated
gapmers needed to achieve an effect was in vast excess of
the RNA copy numbers present during the experiments. In
this case, it can indeed be shown that primarily affinity, and
not target RNA levels, determine potency (see the subsec-
tion headed “Target degradation by RNase H”). Repeating
such a study with high-affinity gapmers dosed at pharma-
cologically relevant levels would help to confirm this.

In general, further experiments are needed in this field to
clarify to what extent, and in which compartments, tran-
scriptome dynamics influence the amenability of particular
RNA targets to gapmer treatment.

Target site accessibility

RNA folds into complex secondary and tertiary structures,
where some segments hybridize to neighboring or more dis-
tal segments to form hairpins and other RNA–RNA inter-
actions (52,53). Most RNA (including mRNA) in the cell is
also bound by a large variety of RNA-binding proteins (54).
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Gapmers have to compete with these structures and pro-
teins to access the target site (Figure 2). The more structured
and inaccessible a given target site is, the lower the activ-
ity of a gapmer against that site, while more accessible tar-
gets can facilitate higher levels of gapmer activity. The role
of RNA secondary structure in gapmer activity has been
demonstrated directly by Vickers et al. (55), by cloning a
specific target site into a luciferase reporter gene along with
different adjoining sequences that formed secondary struc-
tures to varying degrees. When analyzing the same gapmer
against each of these constructs, they were able to show that
the activity of the gapmer was reduced when the target site
was part of a double strand in a secondary structure in the
RNA.

There are well-established experimental methods based
on chemical probing that allow the structure of specific
transcripts to be determined (53,56). Methods that probe
the secondary structure of RNA on a transcriptome-wide
scale are also being developed (57–60). Furthermore, lo-
cal secondary structure can be predicted from sequences
using dynamic programming algorithms that take experi-
mentally measured values of stacking and destabilizing en-
ergies into account, such as mfold (61). Based on such algo-
rithms, accessibility predictors that compute probabilities
of short stretches of RNA being unpaired have been de-
veloped, such as sfold (62) or RNAplfold (63). Indeed, on
two sets of 573 and 360 siRNAs, RNAplfold showed rea-
sonable success in correlating siRNA activity with predicted
local accessibility (63). Recently, RNAplfold was also used
to successfully correlate large differences in target RNA re-
duction by gapmers to differences in predicted local accessi-
bility (64). In the same study, the impact on target inaccessi-
bility due to protein binding was compared with the impact
due to predicted target RNA structure. Here, gapmer ac-
tivities on target RNA in cells, where proteins were bound
to the RNA, and in a cell-free system, where proteins were
not bound, were seen to be relatively similar, leading to the
conclusion that RNA structure has a significantly greater
effect on gapmer activities than protein binding (64). To
more comprehensively evaluate the effects of protein bind-
ing to RNA, large transcriptome-wide occupancy maps are
starting to appear. These maps are based on UV crosslink-
ing and immunoprecipitation of mRNA–protein complexes
in combination with sequencing, to identify RNA binding
sites (65,66). These global maps are based on the spliced
transcriptome, however, which limits their usefulness for
rational specificity optimization, since gapmers also target
the unspliced transcriptome (subsection headed “The tar-
getable sequence space”).

In principle, the competing interactions from higher or-
der structures in RNA and protein binding should be as-
sessed for every potential target site to evaluate the likeli-
hood of oligonucleotide binding at that site. Alternatively,
methods to directly evaluate target site accessibility to gap-
mers have also been investigated. By using random libraries
of 106–1012 different gapmers of defined length against a
single RNA target, the target sites most accessible to RNase
H-mediated cleavage by oligonucleotides from the library
can then be determined by measurement of cleavage frag-
ments (67). This method and other similar methods have
been reviewed elsewhere (68).

As a final note, just as the RNA molecule can form sec-
ondary structures with itself, so can the oligonucleotide.
Such oligonucleotide structures can be divided into du-
plexes formed between two oligonucleotides, and folding
of a single oligonucleotide into a stable hairpin structure.
Oligonucleotides forming self-structures first need to break
those structures before hybridizing with RNA. Gapmers
predicted to form duplexes have been associated with de-
creased activity (69). However, although oligonucleotide
structures are detrimental to the binding between oligonu-
cleotides and the RNA target site, they may improve other
drug-properties, such as transport or uptake. For splice-
modulating oligonucleotides transfected into human my-
otube cultures, those predicted to form duplexes have been
associated with increased activity (70), although this obser-
vation may be an artifact of the delivery procedure (71).

Hybridization between oligonucleotides and (unintended) tar-
get sites

The most important determinant of the effect of an oligonu-
cleotide on a target site is the annealing reaction between
them, resulting in their hybridization.

Hybridization between two complementary nucleic acid
strands is governed by hydrogen bonding between base
pairs on opposite strands and base stacking (72,73). The
stability of the duplex is mainly driven by stacking ef-
fects in the double helix (74), but water exclusion and
counterion structuring also contribute (75). The hydrogen
bonds between opposing bases are primarily responsible for
base pairing selectivity (76). Indeed, the Watson–Crick base
pairs between adenine (A) and uridine or thymine (U or
T), and between guanine (G) and cytosine (C), where hy-
drogen bonds are optimally aligned sterically (73), gener-
ally result in the strongest binding, although many other
hydrogen bonded base pairs are possible (77). A base pair
that is not a Watson–Crick pair, between A and U/T, or
between G and C, is here called a mismatched base pair.
The binding affinity of fully complementary and partially
mismatched nucleic acid duplexes can be measured in melt-
ing experiments (78,79). Thermodynamic parameters based
on nearest-neighbor approximations (80) can then be cal-
culated from UV absorbance versus temperature curves.
The major assumption in such nearest-neighbor models is
that the contribution to overall binding affinity for a base
pair is dependent only on the identity of adjacent base
pairs, since the major interactions involved, hydrogen bond-
ing and stacking, are both short-range interactions. In this
manner, the contribution to the standard free energy of
binding for any dinucleotide base pair, such as the 16 pos-
sible fully complementary dinucleotide base pairs (such as
AA/TT and AT/TA), as well as the 64 possible dinucleotide
base pairs where one mismatch is allowed (such as GA/TT
and GT/TA), can be reliably determined (81). Since the
standard free energy of binding at 37◦C, �G◦, is logarithmi-
cally proportional to the dissociation constant for oligonu-
cleotide duplexed to an RNA target (79), �G◦ is considered
a physiologically relevant representation of binding affinity
(78).

As an example, we can calculate the effect on affinity as a
function of changing a G/C base pair to either a G/G mis-
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Figure 3. The effect of mismatches on affinity depends on the identity of
the mismatched base pairs and the sequence context. The vertical axis in-
dicates standard free energy, �G◦. On each side of the axis are indicated
�G◦ values for three examples of trinucleotide bases, which are paired ei-
ther fully matched or with one central mismatch. On the left-hand side,
the trinucleotide is GGC, and on the right-hand side it is CGA. The two
mismatch-examples are G/G and G/T on both the left- and right-hand
sides. Thermodynamic parameters for DNA–DNA binding were used to
calculate �G◦ values (81).

match or a G/T mismatch, and show that it depends on the
surrounding base pairs. For this calculation, we use thermo-
dynamic parameters for DNA–DNA binding (81). First, we
consider the case with a G immediately upstream and a C
immediately downstream, so that the sequence reads (from
5′ to 3′) GGC. The fully complementary binding region is
then CCG (from 3′ to 5′), and the free energy of binding
�G◦ for this region is calculated to be −4.1 kcal/mol, as
shown in Figure 3 at the left-hand side of the vertical axis. If
a G instead of a C is introduced in the central position of the
binding motif, giving CGG, �G◦ increases by 1.9 kcal/mol
(lower affinity). If instead, the central mismatch is a T, giv-
ing CTG, a much larger reduction in affinity is seen, with
�G◦ increasing by 3.6 kcal/mol (Figure 3, left). That is, the
reduction in binding strength introduced with a single mis-

match depends on the type of mismatch, where a G/G is
less detrimental than a G/T.

If a different sequence context, CGA, is considered, the
fully complementary binding region is then GCT (from 3′
to 5′), and �G◦ for this region is calculated to be −3.5
kcal/mol, as shown in Figure 3 at the right-hand side of
the axis. If, as in the first example, a mismatched G is intro-
duced at the central position, the increase in free energy is
twice as large as for the first sequence context (GGC), in-
creasing by 3.8 kcal/mol. Interestingly, whereas for the first
sequence context, a G/T mismatch was more detrimental
than a G/G mismatch, with the CGA sequence context, the
G/T mismatch only increases �G◦ by 3.3 kcal/mol, which
is less than the effect of the G/G mismatch (Figure 3, left-
hand side).

Thermodynamic parameters are different for DNA–
RNA binding compared with DNA–DNA binding (82,83)
and DNA–RNA binding is also affected by chemical mod-
ifications such as LNA (84,85). This will change the nu-
merical values for the thermodynamic parameters in the
nearest-neighbor model, but not the conclusion, which is
that oligonucleotides will bind with highest affinity to their
fully complementary intended RNA target regions, but they
can also bind, albeit with lower affinity, to unintended re-
gions of RNA where one or more bases are mismatched.
The strength and extent of mismatched binding will de-
pend on the identity of the involved base pairs as well as
the neighboring nucleobases (Figure 3).

Target degradation by RNase H

RNase H1 is a non-sequence-specific endonuclease that rec-
ognizes RNA–DNA heteroduplexes and specifically cleaves
the RNA strand (86). The molecular structure of RNase H1
complexed with an RNA/DNA substrate has been identi-
fied using crystallography (87). Since most of the modifica-
tions that increase affinity, such as LNA, 2′-O-methoxyethyl
and 2′-O-methyl (2′OMe), do not recruit RNase H (7),
modified oligonucleotides are typically designed with high-
affinity nucleotides in the flanks and a central gap of
DNA, hence the name gapmers. As discussed in the sub-
section headed “The targetable sequence space”, it is the
RNase H1 enzyme variant that primarily contributes to
oligonucleotide-mediated degradation. Here, we focus on
the effects of mismatched base pairs on human RNase H1
cleavage rates, which is of particular interest when evaluat-
ing specificity. In a recent study, RNase H1 was incubated
with a gapmer duplexed with a mismatched RNA (88). The
subsequent RNA cleavage fragments were measured using
phosphor imaging. About half of the gapmers tested with
single mismatches at various positions had decreased cleav-
age rates compared with the fully complementary gapmer.
The other half, however, had increased rates of cleavage.
Clearly, therefore, RNase H1 is able to cleave mismatched
duplexes. The variability in the position of the cleavage sites
and the rate of cleavage, as reported in the study (88), also
demonstrate that the RNase H enzyme has some degree of
sequence-motif-dependence, probably relating to the over-
all structure of the gapmer when duplexed with RNA. The
correlation between the structure of the RNA-DNA duplex
and its properties as a substrate for RNase H has been re-
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viewed by Zamaratski et al. (89). In a recent study, we ex-
plored the sequence-specificity of gapmers after transfec-
tion into HeLa cells, using massively parallel reporter anal-
ysis of short RNA motifs (28). The HeLa cells were first
transfected using a library of plasmids, expressing identical
reporter genes except for a degenerate 7mer subsequence in
the 3′ UTR. The gapmers were designed with LNA-flanks
perfectly complementary to the 3 nt-flanking regions up-
and downstream of the degenerate 7mer sequence in the re-
porter genes. By sequencing cDNA derived from the plas-
mid library, the effects of targeting the degenerate region
with each gapmer could be determined. In effect, for each
gapmer, quantitative information was obtained for over 15
000 partially mismatched target sequences in parallel. This
study confirmed, as expected, that the free energy of bind-
ing between gapmer and mismatched target RNA affects
the extent of the observed knockdown (28). The study also
showed that the positions of mismatches or bulges in the
duplex relative to the RNase H cleavage site influence the
extent of the knockdown as well (28). More in vitro and in
vivo work is needed to further evaluate the properties of mis-
matched duplexes as substrate for RNase H when consider-
ing the sequence-specificity of gapmers.

Relating overall free energy of binding with potency

Since the free energy of binding is a thermodynamic state
function, �G◦ values are additive for sequential reactions,
and the overall free energy of binding between gapmer and
target RNA can therefore be written as a sum of all the re-
actions involved (Figure 2)

�G◦(overall) = �G◦(RNA structure)+
�G◦(protein occlusion)+
�G◦(oligo structure)+
�G◦(hybridization)

In this section, we will demonstrate how the overall free
energy of binding, or overall binding affinity, can be related
to the potency of the gapmer. The enzyme reaction scheme
for gapmer binding to target RNA, and subsequent cleavage
by RNase H, can be written

O + T
Kd�OT (reaction 1a)

OT + E � OTE
kcat−→ O + C + E (reaction 1b)

where gapmer oligonucleotide, O, binds to RNA target, T,
giving the duplex, OT, which is a substrate for the RNase
H enzyme, E, that can cleave the RNA, indicated as C in
reaction (1b) (90). This reaction scheme could be expanded,
for example to take into account that RNA is produced at
a constant rate and degraded following first-order kinetics
(48), or that gapmer is continuously excreted through urine.
Here, the simple reaction scheme described by reactions (1a)
and (1b) suffice for exploring the possible relations between
binding affinity and potency.

The dissociation constant, Kd = [O][T] / [OT], in reac-
tion (1a) is related to the binding affinity, �G◦, through the
basic thermodynamic relationship �G◦ = RTln(Kd), where
R is the gas constant and T the absolute temperature (79).
To relate this to the potency of the gapmer, we first apply
the law of mass action to the reactions (1a) and (1b), and

write the changes in concentrations over time as a set of
five coupled differential equations (one for each of O, T,
OT, E and OTE). The numeric solutions to these equations
(91), for physiologically relevant reaction parameters (48),
are shown in Figure 4.

The relative concentrations of free and uncleaved target
RNA, [T], free gapmer, [O] and the duplex between gapmer
and RNA, [OT], as they develop over time, are shown in
Figure 4A. After administration of the gapmer, the duplex
between gapmer and target rapidly forms, and the RNA lev-
els start to decline, as it is being cleaved by RNase H, and the
simple model does not include the production of new RNA.
For clarity, the concentrations of RNase H enzyme alone,
and when it is complexed with OT, are not shown. Also, the
increasing concentration of cleaved (and degraded) RNA,
[C], is not shown.

At a fixed time of evaluation, denoted by the grey vertical
line in Figure 4A, the concentration of RNA is recorded and
plotted as a function of the total concentration of gapmer
administered, as shown in Figure 4B. This traces out the
familiar concentration–response curve (CRC) relationship
that is often approximated by the Hill–Langmuir equation
(92). From the CRC, the concentration of gapmer at which
the half maximal effect (EC50) is achieved, can be identi-
fied. The potency of the gapmer can be defined as 1/EC50
(93).

In Figure 4C, EC50 is plotted as a function of the dis-
sociation constant, Kd (solid line). As discussed, Figure 4C
also traces out the relationship between binding affinity and
potency. As can be seen from Figure 4C, for weak bind-
ing affinities, there is a linear relationship between binding
affinity and potency. However, as the binding affinity is in-
creased, typically only achievable by high-affinity modifica-
tions such as LNA, the potency reaches a low plateau (solid
line in Figure 4C). Mechanistically, this can correspond to
a situation where the gapmer binds so strongly to the RNA,
that practically all of the RNA is in duplex. Increases in the
binding affinity beyond this point will then not result in in-
creased potency. As argued in Pedersen et al. (48), a low
plateau can also be reached when the factor limiting po-
tency is the rate at which RNase H cleaves the target, rather
than the affinity between gapmer and target RNA.

Also argued in Pedersen et al. (48), using a more detailed
reaction scheme than the one presented here, is the concept
that a parabolic relationship may appear, where there ex-
ists an optimal binding affinity (sketched in Figure 4C as
a dashed line). This can happen when the affinity between
gapmer and RNA target is so high, that the gapmer also
has appreciable binding to the RNA fragments after cleav-
age, thereby limiting their catalytic effectiveness. This situ-
ation is particularly relevant if the target RNA has a high
turnover rate, since the gapmer is then simply sequestered
by RNA that is quickly replaced by newly produced RNA.
Such a parabolic relationship between affinity and potency
was demonstrated experimentally for four different RNA
targets in vitro (48). In summary, there may only be linear-
ity between gapmer binding affinity and potency up to a
certain point, after which increased affinity has no effect,
or may even reduce the potency.

As a final remark, in the discussion above, a gapmer was
considered to only have a single binding site in the tar-
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Figure 4. Model solutions of reactions (1a) and (1b) leading up to the rela-
tionship between binding affinity and potency. (A) Time-resolved numeri-
cal solution of the relative concentrations of free target RNA, [T], free gap-
mer oligonucleotide, [O], and the duplex between gapmer and RNA, [OT].
At a fixed time point, denoted by the vertical grey line, the concentration
of RNA target is recorded, and in (B) plotted as a function of the total con-
centration of gapmer. From this curve, the gapmer concentration at which
a half-maximal effect is achieved can be identified, and in (C) plotted as a
function of the dissociation constant, Kd, between free gapmer and target
RNA, and duplex (solid line). The relationship between binding affinity
and potency presented in Pedersen et al. (48), is sketched as a dashed line.

get RNA. Gapmers with multiple mismatched binding re-
gions in the same RNA, each of these weakly binding re-
gions being slightly active, may still have an overall potent
effect on that RNA. This is supported by the observation
that gapmers with multiple fully matched binding regions in
the same RNA demonstrate significantly increased potency
compared with single-region targeting controls (94). There-
fore, when assessing the potency of an oligonucleotide, ide-
ally all possible target regions, and not just the region of
strongest binding, must be taken into account.

RNASE H-ACTIVITY ON UNINTENDED TARGET RNA
IN VIVO

In the case where unintended RNA targets are present that
are fully complementary to the gapmer, the extent to which
the gapmer will be active will be determined by the factors
reviewed in the section headed “Determinants for RNase
H-activity on unintended target RNA”. These factors are
the same as those that govern the effect on the intended
RNA target of interest, where some gapmers will be highly
active and others will not, even though they are all fully
matching (36,95). In this section, we focus on the experi-
mental evidence that RNA to which the gapmer has a mis-
matched binding region, can be unintentionally targeted in
vivo and degraded as a consequence of this binding. Degra-
dation of mismatched RNA in vitro by gapmers has been
amply demonstrated, as reviewed elsewhere (96,97).

When investigating the effects of mismatched binding to
RNA, a direct approach is to introduce mismatches in a
gapmer, and compare it with a gapmer that fully matches
the RNA target. Examples of such studies are presented in
the subsection headed “Specificity of different gapmers for
the same target”. The results from these studies, however,
are limited to demonstrating only that unintended cleavage
of mismatched RNA is possible, and not the extent to which
it actually happens transcriptome-wide in various tissues
when dosing at therapeutic levels. Studies analyzing such
global effects of gapmers with respect to specificity are re-
viewed in the subsection headed “Specificity of the same
gapmer for different targets”.

Specificity of different gapmers for the same target

Using Xenopus oocytes as a model system for investigating
the specificity of gapmers in vivo, it was demonstrated al-
ready in 1992 that unmodified gapmers can cause degrada-
tion of transcripts at mismatched target sites (98). More re-
cently, this observation has been extended to LNA- and 2′-
OMe-modified gapmers with phosphorothioate backbones
(99). In the study by Lennox et al. (99), when microinjecting
40 nM LNA-modified gapmer in Xenopus oocytes, a 90%
knockdown of the target mRNA survivin was observed af-
ter 4 h. Gapmers with one to three mismatches retained the
ability to reduce transcript amounts by as much as 40–50%.
When modifying the gapmers with 2′OMe instead of LNA,
at the same dose level and duration, fully complementary
gapmers reduced transcript levels by 70%, one mismatch
by 40%, whereas two or three mismatches did not reduce
transcript levels appreciably below control levels in unin-
jected oocytes. These results were correlated with the affin-
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ity of the gapmers towards the target region on the tran-
script, as measured by melting temperatures. The melting
temperature (Tm) is defined as the temperature at which half
of the oligonucleotides are duplexed with target RNA. Al-
though not strictly proportional to the binding affinity at
physiological conditions, �G◦ (78), the Tm is a frequently
used experimental measure of duplex stability. The LNA-
modified gapmers in the study (99) had melting tempera-
tures ranging from 78◦C to 59◦C, depending on the number
of mismatches for the target site in survivin. The melting
temperatures of iso-sequential but 2′-OMe-modified gap-
mers ranged from 60◦C to 33◦C. The generally higher affini-
ties obtained with the LNA-modified gapmers, both fully
matched and mismatched variants, compared with the 2′-
OMe-modified gapmers, were suggested as an explanation
for the more pronounced effects on target knockdown. This
relationship between affinity and potency has also been ob-
served in vitro, as reviewed elsewhere (97), and can be pre-
dicted theoretically, as discussed in the subsection headed
“Relating overall free energy of binding with potency”.

The effects of single basepair mismatches have also been
investigated in mice using LNA-modified gapmers with a
phosphorothioate backbone (100). Intravenous injection of
a 12 nucleotide (nt) long gapmer, dosed at 2.5 mg/kg, with a
fully complementary target site in apolipoprotein B (Apob),
demonstrated >95% knockdown in whole kidney tissue. A
single mismatch version of this gapmer resulted in only a
30% reduction. To explore possible length-dependent ef-
fects, 14 nt and 16 nt long gapmers targeting the identical,
but extended, region in Apob were compared with the 12
nt gapmer. As explained by the authors, since the longer
versions were found to be less potent in vitro, in order to
have a similar effect in mice across all lengths, they were
dosed at higher levels, 5 and 25 mg/kg (14 nt and 16 nt, re-
spectively), compared with the 12 nt gapmer dosed at 2.5
mg/kg. Interestingly, the difference between target knock-
down for fully matched and one-mismatch versions became
successively smaller for the 14 nt gapmer and the 16 nt gap-
mer. For the 14 nt gapmer, the fully matched version re-
duced Apob by 90%, and the mismatched by 40%, and for
the 16 nt gapmer, the fully matched reduced Apob by 85%,
and the mismatched by 50%. The reason for this appar-
ent improved mismatch-specificity for shorter gapmers, it
was argued by the authors, is because differences in binding
affinity between fully matched and mismatched gapmers are
larger for shorter gapmers than for longer (100). However,
to demonstrate that this is the case, free energies of binding,
�G◦, must be measured, and not just melting temperatures,
Tm. The reason for this is that whereas �G◦ is logarithmi-
cally proportional to binding affinity (78), the relationship
between Tm and binding affinity is more complex and not
linear. According to You et al. (101), there will always be
a larger gap in Tm between fully matched and mismatched
gapmers for shorter lengths, compared with longer lengths.
This, however, does not necessarily reflect a larger difference
in binding affinity between a fully matched and mismatched
gapmer for shorter lengths, compared with longer. If such
a length-dependence on affinity changes could be shown by
direct measurement of free energies of binding, it would be
a deviation from nearest neighbor assumptions (subsection
headed “Hybridization between oligonucleotides and (un-

intended) target sites”), which would have important im-
plications for how to calculate binding affinity for oligonu-
cleotides. An alternative explanation of these results, could
be that the 12 nt gapmer has a binding affinity where there
is optimal potency for the fully matched version (refer to
the subsection headed “Relating overall free energy of bind-
ing with potency”). For the 14 nt gapmer and 16 nt gap-
mer, the binding affinities for the fully matched versions are
higher than for the 12 nt gapmer, so they are on the left side
of the affinity/potency parabola in Figure 4C, and the po-
tency thus becomes lower as the affinity increases (Figure
4C). In contrast, the reduced binding affinities for the three
mismatched versions could place them on the right side of
the parabola in Figure 4C, where increases in binding affini-
ties result in higher potency.

At some point, enough mismatches are introduced that
the binding affinity is reduced below the level needed to
elicit activity. As an example, a 20 nt long phosphoroth-
ioate gapmer with seven mismatches was unable to cleave
v-raf-1 murine leukemia viral oncogene homolog 1 (RAF1)
mRNA compared with a fully matching version that re-
duced mRNA by >90% (102). The seven-mismatch gapmer
also did not affect tumor growth in nude mice, whereas the
fully matching version significantly affected growth (102).
There are other examples where multiple mismatches in a
20 nt gapmer completely abolished the activity (103). To
the best of our knowledge, the most mismatches reported
for a gapmer that still retained some ability to reduce tar-
get RNA, is a 20 nt long gapmer targeted against tumor
necrosis factor (TNF) (104). In this study, in macrophages
isolated from the adipose tissue of db/db mice, at 5 mg/kg,
the fully matched gapmer reduced transcript levels by 65%,
whereas a six-mismatch version was able to reduce tran-
script levels by 30%, compared with a completely sequence-
scrambled gapmer.

These examples demonstrate that under certain condi-
tions gapmers can bind to and degrade transcripts with
mismatched target regions in vivo. This fact has been used
to design 20 nt gapmers that target two apoptosis regula-
tors, B-cell CLL/lymphoma 2 (BCL2) with full complemen-
tarity, and BCL2-like 1 (BCL2L1) with three mismatches
(105). When dosing at 200 nM in vitro by transfection, af-
ter 7 h BCL2 mRNA was reduced by 75% by both LNA-
and 2′-MOE-modified iso-sequential versions, whereas the
BCL2L1 mRNA was reduced by 70% by the LNA-modified
version, and by 40% by the 2′-MOE-modified version. Dos-
ing with the 2′-MOE-modified version at 20 mg/kg in nude
mice caused marked growth inhibition of human colon can-
cer cell xenografts compared with a scrambled control gap-
mer (106).

Specificity of the same gapmer for different targets

Work on gapmers targeting single nucleotide polymor-
phisms for allele-selective inhibition of mutant RNA
demonstrates how varied the effect of a single mismatch
in the target region can be (107). For a set of gapmers de-
signed to fully match a mutant version of Huntingtin RNA,
reduction of mutant protein levels by 80% relative to control
levels in mouse brain were reported. However, when the ef-
fects on wild-type Huntingtin RNA were measured, towards
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which the gapmers had a single mismatch in the RNase H-
recruiting gap-region, anything between no measureable ef-
fect and reduction in protein levels by up to 80% relative to
control were observed. Based on the design of the gapmers,
these differences in the sensitivity to the single mismatch
were inferred to depend on factors such as the binding affin-
ity of the gapmer, the length and position of the gap-region,
the position of the mismatched nucleotide within the gap-
region, and the type of chemical modifications used (107).

Since gapmers catalyze cleavage of target transcripts, the
ability to study transcriptome-changes on a global scale us-
ing microarrays or RNA sequencing, allows direct measure-
ment of global intended and unintended target reductions
and downstream effects. This was first demonstrated in vivo
by Cho-Chung et al. (108) in a mouse model of human
prostate cancer. Treatment with human- and mouse-specific
gapmers targeting the cAMP-dependent protein kinase reg-
ulatory subunit RI� (PRKAR1A) was found to alter the
expression of hundreds of genes >2-fold, as measured us-
ing microarrays. This included genes involved in prolifer-
ation and differentiation, as would be expected, but also
genes that appeared to have no relationship to PRKAR1
and cAMP-dependent signaling (109).

In a more direct microarray-based analysis of the
sequence-specific effects of gapmers targeting the ABC
transporter ABCB1 in vitro, Fisher et al. (110), identified
37 genes consistently affected >2-fold, eight of which were
repressed by treatment with both conjugated and uncon-
jugated gapmer, and not by a mismatched control gapmer.
Among the transcripts encoded by these eight genes, besides
the intended target ABCB1 (also known as MDR1), se-
quence analysis identified potential unintended target sites
in three of them. These potential unintended target sites
had four or five mismatches, but predicted melting tempera-
tures were sufficiently high to allow binding (110). Although
the sequence analysis therefore suggests that some of these
genes are unintended targets, the experimental design did
not allow clear discrimination between effects from unin-
tended targeting and secondary effects due to reduction of
the target gene.

Finally, three different microarray-analyses have recently
been reported, which all compare gene expression changes
in the liver of mice, after administration of LNA-modified
phosphorothioate gapmers with different hepatotoxic po-
tentials (1–3). In a study by Kakiuchi-Kiyota et al. (1), three
different gapmers were evaluated. The gapmer with the low-
est hepatotoxic potential produced no significant changes
in various biochemical markers after dosing. This gapmer
had no fully matched- or one-mismatch target sites, and
only a single unintended target with two mismatches. The
gene harboring that two-mismatch target site did not ex-
hibit reduced expression at any of the time points eval-
uated in the study. A gapmer with high hepatotoxic po-
tential also had no fully matching target sites, but three
genes with one-mismatch target sites, and six genes with
two-mismatch target sites. Out of these, only one of the
genes with a one-mismatch target site, and one of the genes
with a two-mismatch target site, were significantly reduced.
The last gapmer, with the highest hepatotoxic potential of
the three gapmers tested in the study, was also the one
that had the most unintended target sites: three genes with

fully matched target sites, one of which was found to be
significantly reduced; ten genes with one-mismatch target
site, two of which were significantly reduced; and 22 genes
with two-mismatch target sites, three of which were signifi-
cantly reduced. As discussed in the section headed “Deter-
minants for RNase H-activity on unintended target RNA”,
the mismatch-tolerance of a gapmer is related to its bind-
ing affinity. However, the authors did not measure bind-
ing affinities to the intended and unintended targets that
were identified. This limits the extent to which general con-
clusions on mismatch-tolerance can be drawn from these
results. The results reported by Kakiuchi-Kiyota et al. (1)
do however suggest that the more unintended target sites
a gapmer exhibits, the higher the risk of increased hepa-
totoxic potential. Such a relationship between hepatotox-
icity and number of unintended targets is also supported
by the work of Burel et al. (2). Here, across 13 different
gapmers, a clear correlation between the number of genes
with lowered expression in the liver of mice, as measured
1 day after dosing, and hepatotoxic potential, as measured
using alanine transaminase (ALT) levels in serum 4 days af-
ter dosing, was observed. Moreover, knockdown of RNase
H1 prior to treatment with the gapmers attenuated the ob-
served hepatotoxicity. That the observed hepatotoxicity is
mediated through an RNase H1-dependent mechanism is
also supported by the work of Kasuya et al. (3). Here, two
LNA-modified gapmers known to have a high hepatotoxic
potential were re-designed by introducing two additional
LNA modifications in the central gap-region, thereby re-
ducing the possibilities for RNase H to bind. Whereas the
original gapmers both resulted in increased ALT levels 4,
7 and 10 days after dosing at 10 mg/kg, the re-designed
oligonucleotides, which were not expected to recruit RNase
H effectively, did not result in increased levels of ALT af-
ter dosing. Similarly to what has been reported by Burel
et al. (2), siRNA-mediated knockdown of RNase H1 prior
to treatment using three other LNA-modified gapmers, sig-
nificantly attenuated the observed hepatotoxicity (3). Early
changes in liver RNA levels were evaluated for one of the
five hepatotoxic gapmers using a microarray analysis. After
24 h, when dosed at 20 mg/kg, the intended target mRNA
Acyl-CoA synthetase long-chain family member 1 (ACSL1)
was reduced almost two-fold, and an additional 16 genes
were significantly reduced >2-fold. Interestingly, the most
likely target regions identified using a sequence analysis of
the 16 genes all had as many as three to five mismatches
to the gapmer. When evaluating the 185 mRNAs where se-
quence analysis identified potential target regions with two
or fewer mismatches, nine were found to be significantly re-
duced, out of which seven could be confirmed using qRT-
PCR (3). These results are all consistent with a model where
the more unintended targets, the higher the risk of some
of these targets being involved in critical cellular functions
leading to hepatotoxicity.

The microarray studies on gapmer specificity mentioned
above (1–3,108,110) do not conclusively identify the un-
intended RNA targets. For future transcriptomics studies
on specificity, we suggest modifying the study design to in-
clude at least two gapmers with different sequences, but
with largely the same effect on the intended target. This
is based on the well-established rule-of-thumb for relating
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Figure 5. Experimental design to identify effects of unintended RNA tar-
gets using transcriptomics. Each box represents the entire transcriptome.
Black dots and filled circles indicate targets and secondary effects. (A)
Upon treatment with AON A, the central dot and largest circle indicate in-
tended target and secondary effects. In addition, three unintended targets
with corresponding secondary effects are shown. (B) When treating with
AON B, the intended target and secondary effects are similar to AON A
(compare A and B), but the unintended targets are different. (C) When
comparing transcriptome changes upon treatment with AON A versus
AON B, pharmacologically-induced changes derived from silencing the in-
tended target are similar, whereas unintended effects are unique to each
oligonucleotide.

gapmer target engagement to the phenotypic changes ob-
served (95). Essentially, if two or more gapmers of different
sequences, but both complementary to the same RNA tar-
get, result in a similar phenotype, whereas a control gap-
mer does not, it strongly suggests that the phenotype is
mediated by target degradation (95). Such a study design
will also allow identification of unintended targets of gap-
mers from transcriptome-wide profiling (Figure 5). Since
hybridization-dependent unintended targets are, by defini-
tion, sequence dependent, two different gapmers targeting
the same transcript at different positions will allow sepa-
ration of the effects of intended and unintended targeting:
The effects of targeting the intended transcript will be the
same for the two gapmers, but effects from unintended tar-
gets will be different, because the two gapmers have differ-
ent sequences. The only theoretical limitation to this setup,
as indicated in Figure 5, is when unintended effects overlap
with intended effects, as seen in Figure 5A, or when parts
of the unintended effects from the two gapmers overlap, as
seen for the effects in the upper right corner in Figure 5C.

Two recent transcriptome-wide profiling studies have ap-
plied such a design (34,111), and while the focus in these
studies was on pharmacological effects derived from silenc-
ing the intended target, re-analysis of the data should, in
principle, allow identification of unintended targets, if such
exist, for these gapmers.

To correlate whether the observed reductions in tran-
script levels can be explained by oligonucleotide-directed
cleavage, one can apply character- or energy-based search-
ing (discussed in the section headed “History and devel-
opments in computational specificity assessments”) of the
RNA sequences to identify the most likely binding regions.
Subsequently, these short RNA sequences can be synthe-
sized to test whether they can activate RNase H when in-
cubated together with the gapmer (112). To conclusively
demonstrate that the observed reductions in transcript lev-
els are due to oligonucleotide-directed cleavage, for each
RNA, the specific cleavage products can be characterized
using 5′-RACE (23). From such fragments, it can then be
confirmed if the cleavage occurred at the predicted binding
site of the oligonucleotide.

For gapmers, we divide effects from unintended RNA tar-
gets into those which are subject to the same mechanism as
the intended effect (here RNase H-induced target degrada-
tion) and those where hybridization to the unintended tar-
get elicits effects through other mechanisms (such as splice
modulation, blocking of binding sites for microRNAs or
RNA binding proteins, and more). We expect degradation
of unintended RNA targets to be the dominating mecha-
nism influencing the specificity of gapmers (see the subsec-
tion headed “Specificity of the same gapmer for different
targets”), and we focus on this mechanism here.

As mentioned in the subsection headed “Defining speci-
ficity”, in this review we focus on the RNase H-induced
degradation of unintended target RNA, since we consider
other effects stemming from hybridization to unintended
target RNA, for example steric blocking of interactions
with ligands, to be negligible in comparison. To illustrate
this, consider oligonucleotides that bind fully to part of the
microRNA mature sequence, but do not recruit RNase H
and instead sequester the microRNA. Because of the high
binding affinity of LNA, it is possible to design oligonu-
cleotides consisting of as few as seven or eight LNAs,
termed tinyLNAs, which are fully complementary to the
seed region of a microRNA, and which effectively sequester
the microRNA target with melting temperatures in the
range 55–80◦C (113). As a result of their short length, they
will naturally also be fully complementary to regions in
many other RNAs besides the intended microRNAs. For
a tinyLNA targeting the seed region of miR-122, we have
identified fully matched regions in ∼12 000 mouse tran-
scripts (∼20% of the unspliced transcriptome in mice). By
comparison, for a longer, 15 nt oligonucleotide also target-
ing miR-122, and with similar binding affinity, we identi-
fied fully matched regions in only two transcripts. How-
ever, upon treatment with either the tinyLNA or the longer
version in mice, measurements of transcriptome- as well
as proteome-changes in liver, relative to a control oligonu-
cleotide, revealed highly similar impacts (113). This simi-
larity suggests that secondary effects derived from the inhi-
bition of miR-122 dominate the measured transcript- and
protein changes. Indeed, the only sequence-specific effect
that could be inferred was derepression of transcripts with
predicted miR-122 binding sites in their 3′-untranslated re-
gion (113). No effect on the many transcripts with fully
matched binding sites for the tinyLNA could be detected
at the RNA or proteome levels (113). This suggests that
the probability that a binding event between a transcript
and the tinyLNA would sterically block an important in-
teraction with other ligands is small. For example, splice-
modulating oligonucleotides need to bind at precisely the
right position to have an effect (114). Finally, protein trans-
lation from the ribosome is not affected by tinyLNA bind-
ing in the coding regions of transcripts (113).

HISTORY AND DEVELOPMENTS IN COMPUTA-
TIONAL SPECIFICITY ASSESSMENTS

In this section, we will discuss computational strategies that
have been used to evaluate the specificity of gapmers. Nor-
mally, specificity evaluations are performed on a large num-
ber of theoretical oligonucleotide sequences tiled along an
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RNA target of interest. Those oligonucleotide sequences
likely to be most specific, as identified by the computational
analysis, can then be selected for actual synthesis and exper-
imental testing.

As already discussed in the section headed “Determi-
nants for RNase H-activity on unintended target RNA”,
multiple factors are known to influence the activity of gap-
mers on a target RNA. Some of these, such as protein oc-
cupancy, are not easily predicted computationally. Even for
those that are, it is not straightforward to integrate them in a
model that gives accurate predictions across multiple RNA
targets (36). Therefore, the hybridization between putative
unintended target sites and the oligonucleotide is the single
factor that currently dominates how computational speci-
ficity assessments are performed in practice. The compu-
tational identification of unintended targets follows devel-
opments in bioinformatics algorithms for character-based
sequence searching and more recently searching using ther-
modynamic models for predicting free energies of binding
and hybridization affinities (Table 1). The Table catalogs the
approximate points in time where new algorithms in anti-
sense oligonucleotide discovery came into routine use, and
represents our best estimates based on personal experience.

Character-based search strategies

Sequence searching is one of the earliest, and arguably
most mature, disciplines in bioinformatics. Character-based
search algorithms (Table 1), such as BLAST (115) and
FASTA (116) for finding homology between sequences have
been employed since the early days of antisense drug dis-
covery. These algorithms were constructed primarily to find
homology (understood evolutionarily as common ancestry)
between longer sequences, and employ heuristics that trade
sensitivity for speed. Although character-based methods do
not differentiate between types of base pairs, so A/T and
G/C are weighted equally and stacking is not taken into ac-
count (see the subsection headed “Hybridization between
oligonucleotides and (unintended) target sites”), there is
nevertheless an overall correlation between the matching of
characters and affinity. Even though the heuristic method
is faster than basic pairwise alignment, in 2007, Freier and
Watt considered it too slow to guide the design of the early
large screening libraries (36) and instead postponed compu-
tational specificity analysis to later stages of drug discovery,
when a lower number of drug candidates are left.

Later character-based algorithms took advantage of the
increased working memory of computers and construct ef-
ficient indexes (117,118) of the database sequence (e.g., all
the possible unintended target transcripts), which allows for
exhaustive searching at speeds orders of magnitude faster
than BLAST. Using these new character-based data struc-
tures and search algorithms it is feasible to perform compu-
tational specificity analysis on all possible oligonucleotide
sequences before synthesizing any of them.

Regardless of the algorithm used, the analyst has to apply
rules and cutoffs to determine search hits that are relevant
as potential unintended targets. This relationship may be
phrased in two ways, which can lead to qualitatively very
different results:

1. More matches between characters (A with T, G with C)
indicates higher affinity leading to assumed higher activ-
ity

2. More mismatches between oligo and RNA targets indi-
cates lower affinity leading to assumed lower activity

Ostensibly, 1 and 2 appear equivalent. However, the
search strategies that they often lead to yield qualitatively
quite different results.

Strategy 1 leads to the following search and selection
strategy:

for each considered oligonucleotide se-
quence
count the number of sites in the sequence
database with at least x complementary
characters to the oligonucleotide se-
quence
choose oligonucleotide sequences with low
counts as more specific

Strategy 2 leads to the following search and selection
strategy:

for each considered oligonucleotide se-
quence
count the number of sites in the sequence
database allowing y mismatching charac-
ters
choose oligonucleotide sequences with low
counts as more specific

If the oligonucleotide sequences under consideration are
of different lengths, strategy 1 will conclude that shorter
oligonucleotides are more specific, whereas strategy 2 will
lead to the opposite conclusion, as shown in Figure 6.

In reality, both short and long AONs can be specific. In
order to reconcile the apparently contradictory strategies
for evaluating specificity using character-based searching,
as presented above, we need to consider the binding affinity
between oligonucleotide and target RNA more closely, as
discussed in the next two sections.

Energy-based search strategy

Energy-based searching addresses some of the shortcom-
ings of the purely character based methods (119). These
methods are based on the significant accomplishments of de
novo RNA secondary structure-based methods (120). Con-
trary to character-based methods, they are based on the bio-
physics of hybridization (see the subsection headed “Hy-
bridization between oligonucleotides and (unintended) tar-
get sites”) and incorporate both stacking, and the fact that
some base pairs (G/C) contribute more to the free energy
of binding than others (A/T). This allows a more physi-
cally accurate method of finding possible hybridization sites
(unintended targets). One can search for sites where the
oligonucleotide is likely to form a thermodynamically stable
duplex with the target site (low free energy of hybridization),
rather than sites with the highest number of matching char-
acters. Originally, these methods were introduced primarily
to predict the optimal target site(s) on the intended RNA
target (121,122). Only later were energy models adapted to
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Table 1. Sequence search algorithms and methods used for specificity assessments of oligonucleotides

Time of introduction Method Advantages Disadvantages

1990 BLAST individual drug
candidates on a webpage

Can be performed by anyone. No
programming skills or specialist
software packages needed

Very low throughput, interpretation
subjective, uses a heuristic algorithm,
i.e. it is not exhaustive

2005 Scripted BLAST or FASTA on
local databases

Can be performed on many RNA
targets in a standardized fashion

BLAST and FASTA are designed and
optimized to detect evolutionary
relationships, not hybridization

2007 Suffix-array matching and
Burrows–Wheeler Transforms

Fast and exhaustive. Can be
performed for all possible gapmers
against a target

Character matching is unphysical,
large memory requirement

2010 Search with energy based affinity
model

Thermodynamic scoring based on
binding affinity between gapmer
and RNA targets

Slow, parameters not publicly
available for most chemical
modifications

Future (nothing published yet) Activity model trained on
transcriptomics data and historic
screening results

Driven by actual activity
measurements on unintended
RNA targets

Requires expertise and high-quality,
needs comprehensive data to build

The times of introduction represent estimates based on our own experience, and lag between 1 and 10 years behind the time of publication in scientific
journals. The methods listed are referenced in the main text when mentioned.
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Figure 6. Different search paradigms yield very different results when
studying the effects of oligonucleotide length on specificity. (A) When
searching for matches with at least a certain number, x, of matching charac-
ters, specificity appears to decrease with length, whereas (B) when search-
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allow scanning of large sequence databases for putative un-
intended targets (123,124).

Unmodified
Modified

-14 -16 -18 -20

14mer:

16mer:

18mer:

20mer:

Binding affinity (∆G°) (kcal/mol)

-12

Potency
optimum

Figure 7. Examples of modifications to gapmers with LNA to increase
binding affinity for optimal potency (here chosen as �G◦ = −19.5
kcal/mol, which is approximately the average of the optimal affinities iden-
tified Pedersen et al. (48) and matches our own experience as well). For
the 14 nt gapmer, from atcgccgtactatg to ATCGccgtactATG (lowercase:
DNA, uppercase: LNA); for the 16 nt gapmer, from tcagaagaccgctact to
TCagaagaccgctACT; for the 18 nt gapmer, from ggcaagactgaatatgaa to
GGcaagactgaataTGAA; and for the 20 nt gapmer, from taagcaaattagcgcg-
tatg to TaagcaaattagcgcgtaTG. Approximated thermodynamic parameters
for LNA/DNA-RNA binding were used to calculate �G◦ values (48).

However, energy-based specificity evaluation has to be
applied with caution, since potency scales with affinity only
within a limited range (refer to the subsection headed “Re-
lating overall free energy of binding with potency”). Beyond
a given threshold, any further increase in affinity does not
improve potency––it might even make it worse, as suggested
by Pedersen et al. (48). From this observation, it follows
that there is an optimal affinity that designers of gapmers
should aim for. Affinity can be modulated by changing the
length of the gapmer or by adding and removing affinity-
enhancing chemical modifications such as LNA. To reach
optimal affinity, short gapmers generally need more affinity
enhancing modifications than longer versions (see Figure
7).

In our experience, the optimum affinity is quite broad,
meaning that there is a range of optimal affinities where
other factors contribute more to potency than affinity does
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(48). When evaluating the specificity of a gapmer using
an energy model, the pertinent question therefore is: how
many sites exist in the targetable sequence space (subsec-
tion headed “Target site accessibility”) that have an affinity
in the optimal range (or close to it)?

One possible way to address this question is to con-
sider that the potency of gapmers does not increase with
affinity ad infinitum (subsection headed “Target degrada-
tion by RNase H”). For any gapmer with a number of
mismatched unintended targets, the affinity towards these
unintended target sites will generally be lower than the
affinity for the intended target (subsection headed “Hy-
bridization between oligonucleotides and (unintended) tar-
get sites”). By increasing the overall affinity of the gapmer,
using chemical modifications such as LNA, both affinities
to intended and unintended targets are increased. When
the affinity/potency relationship plateaus (Figure 4C), the
gapmer can become unspecific at the point where increased
affinity does not increase potency for the intended target
(where it has plateaued), but only on the unintended targets
(where it is still in the linear range). Therefore, one has to be
careful not to increase the affinity beyond what is needed for
maximal potency, when working with high-affinity modifi-
cations.

Figure 8 illustrates that the number of unintended target
sites decreases with the length of the gapmer, given a hypo-
thetical set of gapmers of different lengths, all adjusted us-
ing chemical modifications to have the same optimal affin-
ity towards the intended target site (Figure 8, black bars).
As a corollary, it follows that if affinity to the intended tar-
get is increased beyond the optimum for maximal potency,
the specificity will decrease, because more mismatched tar-
get sites will be in the optimal affinity range (Figure 8, gray
bars).

As it is rooted in thermodynamics and experimentally de-
termined binding parameters, we believe that energy-based
specificity evaluation has the potential to be much more in-
formative than character-based methods. Currently, how-
ever, energy-based searching has two major practical disad-
vantages: slow speed and lack of easily available parameters
for modified nucleotides. The more complex energy-based
scoring is not compatible with the current indexing tech-
nology (suffix-arrays and -trees) and transforms that have
vastly improved the speed of character-based searches. Fur-
thermore, nucleotide modifications often have a large im-
pact on the hybridization energy, but the nearest-neighbor
parameters for modified nucleotides are not readily avail-
able for most modifications except for LNA (84,85).

Nevertheless, it is our opinion that an energy-based
search with RNA parameters for a modified oligonucleotide
is still more relevant than the simpler character-based meth-
ods. A pragmatic solution for the slow speed of energy-
based searches is to perform a two-step process: first, a low-
stringency by fast character-based searching, followed by
post-scoring of hits with a nearest-neighbor energy model.

Computational evaluation of specificity in a discovery process

As a concluding example, we will now examine the
transcriptome-wide specificity-profile for gapmers between
12 nt and 20 nt in length targeted to the human pre-
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equal affinity to an intended target and specificity according to compu-
tational predictions based on an energy model. Simulated data of 100
oligonucleotides of each length used to search a target space of 250 kb
using RNAhybrid (123). A (partially mismatched) target site was included
in the count if it had a free energy of binding to the oligonucleotide no
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effect of oligonucleotides binding 2 kcal/mol more strongly than what is
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tended target site were included in the count. The numeric simulation was
performed using thermodynamic parameters for RNA–RNA interaction
(123), but the qualitative conclusions will be the same with parameters for
DNA and modified nucleotides.

mRNA for proprotein convertase subtilisin/kexin type 9
(PCSK9). An LNA-modified gapmer targeting PCSK9 has
been shown to induce a sustained reduction of low-density
lipoprotein cholesterol in nonhuman primates (125). For
this example, we will evaluate specificity towards the un-
spliced human transcriptome, where each gene is repre-
sented by the longest pre-mRNA variant as annotated by
the Ensembl gene builds release 70 (126). This unspliced
human transcriptome covers around 56 000 different genes.
For simplicity, we will only consider gapmers designed with
three LNAs in each flank and a central gap of DNA. There-
fore, in this example, only a single gapmer can be designed
against each target site in PCSK9.

The unspliced transcript for PCSK9 is 25k nt in length
(Ensembl ID ENST00000302118). For gapmers of length l,
the total number of unique but overlapping target sites that
can be targeted by gapmers is therefore 25000 – l +1. That
is, gapmers can be designed for just below 25k target sites
of each length. Since we consider gapmers of nine different
lengths (between 12 nt and 20 nt), in all we need to evaluate
the specificity of close to 9 × 25 000 gapmers = 225 000
gapmers.

Figure 9A shows the number of fully matched, unin-
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Figure 9. Specificity profile for gapmers targeting the pre-mRNA for PCSK9. (A) For each 12 nt (gray) and 20 nt (black) gapmer that can be designed, the
number of fully matching unintended target sites in the transcriptome are shown as a function of the starting position for that oligonucleotide in PCSK9.
At the top, introns (line) and exons (box) are shown for PCSK9. For exons, untranslated regions are in white, and coding regions in grey. (B) All possible
gapmer sequences of each length complementary to the target are shown (black), along with the subset that are unique to PCSK9, i.e. have no fully matched
target regions anywhere else in the transcriptome (gray bars), and the number of unique gapmers with no unintended targets in the human transcriptome
with a binding energy within 3 kcal/mol of the fully matching intended target site.

tended RNA targets found in the human transcriptome,
for each possible gapmer of 12 nt (grey line) and 20 nt
(black line) in length, as a function of the position along
the PCSK9 transcript. For clarity, only the 12 nt and 20 nt
lengths are shown in the Figure. For 12 nt gapmers, the me-
dian number of unintended fully matching targets is 160.
That is, in general a 12 nt gapmer can be expected to bind
with perfect complementarity to hundreds of transcripts be-
sides the intended target transcript. In contrast, most 20 nt
gapmers are unique and only target the PCSK9 transcript
(see Figure 9A, black line). Notably, there are four regions
of around 0.5 kb within which both 12 nt and 20 nt gapmers
have >2000 unintended targets. These regions have a highly
repetitive nucleotide composition.

In Figure 9B, we summarize the observations discussed
so far. First, the black bars show the total number of gap-
mers of each length that can be designed, which is just below
25k. Second, the grey bars show the number of gapmers of
each length that are unique, that is, have no fully matched
unintended targets. As seen, for 12 nt gapmers almost none
are unique whereas for 20 nt gapmers most are. For gap-
mers of length 16, around half of them can be expected to
be unique.

Similarly to the analysis presented in the subsection
above, we next calculate the minimal free energy of binding
for each of the gapmers that can be designed to the intended
target sites in PCSK9, against all pre-mRNA molecules
in the human transcriptome. We judge those gapmers that
have no unintended, fully matched as well as mismatched,
targets with binding energy within 3 kcal/mol of the in-
tended target site in PCSK9, as specific. In Figure 9B, we
summarize these observations in the white bars. As seen,
only a few 15 nt gapmers are specific whereas most 20 nt
gapmers are.

CONCLUSION AND RECOMMENDATIONS

We have shown that RNase H-recruiting oligonucleotides
(gapmers), taken as a class, are not different from approved
small molecules in terms of the magnitude of their impact
on the transcriptome (discussed in the Introduction sec-
tion). However, the simple sequence-based nature of gap-
mers promises predictability of specificity and thus also
the opportunity to maximize specificity when designing
gapmers. Still, although the basic principles for hybridiza-
tion with unintended targets through base pairing interac-
tions are well understood (section headed “Determinants
for RNase H-activity on unintended target RNA”), we are
not yet at the point where computational predictions alone
can ensure specificity. This may in part be because the reac-
tion between RNase H and the gapmer/RNA target duplex
needs to be better understood. We have discussed the toler-
ance for mismatches between gapmer and unintended tar-
get sites (section headed “RNase H-activity on unintended
target RNA in vivo”) and presented algorithms that al-
low computational prediction of these tolerances (section
headed “History and developments in computational speci-
ficity assessments”). A pragmatic way to apply these algo-
rithms in drug discovery is to de-select sequences that are
obviously un-specific before they are ever synthesized, keep-
ing in mind that such computational screens certainly do
not guarantee specificity.

We have extensively reviewed the thermodynamics of
gapmer binding to unintended RNA target sites and how
this relates to potency. Only for weakly binding gapmers can
we expect a linear relationship between affinity and potency.
When high-affinity inducing chemistry is introduced, the re-
lationship can become non-linear, plateauing or even revers-
ing. This is important, because if the affinity/potency rela-
tionship plateaus, specificity will decrease if affinity to the
intended target site is too high. Furthermore, the thermody-
namics of gapmer-binding to target predicts that long gap-
mers will be more specific than short ones of equal affinity.
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Should we then always design gapmers of 20 nt in length or
even longer? In our opinion, the answer is no. Other prop-
erties that gapmers must have to be drug-like may be more
easily, or only, realized with shorter lengths. A simple exam-
ple could be, that the preferred target region in the intended
target transcript is only accessible to gapmers that are 17 nt
in length or shorter, due to stable secondary structures in
the target. Another example could be toxicity mechanisms
where shorter lengths are better tolerated than longer, such
as the heparin-like effect observed for some phosphoroth-
iate oligonucleotides, where the negatively charged phos-
phorothioate linkages has been implicated as a potential
modulating factor on blood clotting times (17). In the dis-
covery process, we usually start out with gapmers of length
14 to 20 nt and between 2 and 4 LNAs in each flank, which
have been computationally identified as having an accept-
able sequence-specificity. Through several rounds of screen-
ing in cellular assays for activity, specificity, and tolerance,
followed by re-designing preferred gapmers, we end up with
a small set of optimized gapmers with measured properties
that fulfil all our criteria for drug-likeness. Notably, in these
small sets of drug-like gapmers, all lengths from 14 to 20
nt can still be present. Because of all the different proper-
ties that drug-like gapmers must fulfil, and because of the
complex relation between these properties and the chemi-
cal structure of the gapmers, in our experience there are no
simple heuristics for length or modification pattern that can
be generally recommended.

For computational specificity evaluation, energy-based
searching promises better performance than simpler char-
acter matching. Nevertheless, there are many other fac-
tors that determine if an unintended RNA target is down-
regulated by a gapmer. A carefully designed experimental
global transcriptome measurement (refer to Figure 5) di-
rectly measures the effect on possible unintended targets,
and remains an important validation of current computa-
tional predictions. However, regardless of whether experi-
mental and/or computational methods are used to assess
specificity, the result will be a list of genes whose expression
is predicted to change when cells are exposed to the gap-
mer. The list of genes will also be species-specific, since the
transcriptomes of rodents and even primates are different
from the transcriptome of man (especially in regions of the
transcriptome not under strong evolutionary pressure, such
as introns). In most cases, it is not simple to infer the risk
of actual clinical toxicity from such a list of affected genes
(127). Conversely, if a gapmer is not well tolerated, it is not
straightforward to establish if one or more unintended tar-
gets are the cause. Indeed, these uncertainties emphasize the
need to develop gapmers with few or no unintended targets.
As discussed in the subsection headed “Specificity of the
same gapmer for different targets”, one mechanism of hep-
atotoxicity leading to increased levels of plasma ALT fol-
lowing treatment with several different high-affinity modi-
fied gapmers, was demonstrated to be correlated to the over-
all number of genes with significantly reduced transcript
levels (2). These results are consistent with a model where
the more unspecific a gapmer is, the higher the chance of
hepatotoxicity, again emphasizing the need to control the
sequence-specificity of gapmers at the design stage. Finally,
the industry consensus recommendation (6) reminds us that

preclinical toxicological assays in animal models supersede
the specificity assessments discussed here in terms of de-
risking drug candidates. There are, to the best of our knowl-
edge, no reports connecting toxic events observed in hu-
man clinical trials to measured hybridization-induced ef-
fects derived from unintended targets. Nevertheless, since
such effects are inherently species-specific, we believe it is
prudent to put extra emphasis on developing in vitro tox-
icology assays based on human cells in antisense oligonu-
cleotide drug discovery (128,130). It may be that for some
gapmers, their critical unintended targets are only present in
the human transcriptome, and their toxic liability therefore
only revealed when evaluated against a human transcrip-
tome. Pragmatically, for gapmers having a few unintended
RNA targets that are reduced to some extent at therapeuti-
cally relevant doses, relevant human in vitro toxicology as-
says can help to evaluate the actual toxic liability associated
with these unintended targets.

We recommend applying global transcriptome profiling
to understand the sequence-specificity of antisense oligonu-
cleotide drug candidates. Our reasons are: (i) experiments
are generally more reliable than computational predictions.
Knowing which unintended targets are affected can, on a
case-by-case basis, help decide between candidates, and (ii)
as more transcriptome-wide experiments are performed, the
accumulating data can be utilized to develop algorithms
that are better at predicting the experimental results (re-
fer to Table 1). Importantly, the examination of the effect
of one gapmer on many putative targets (understanding
specificity) and the examination of the effects of many dif-
ferent gapmers on a single target (understanding potency
and knockdown to find potent drug candidates) are gov-
erned by the same principles and are mutually beneficial.
Hence, learning how to construct and select the most spe-
cific gapmers will also teach us how to design the most po-
tent ones. Doing so exploits the biggest advantage antisense
oligonucleotide drugs have over other classes of drugs - their
sequence-based nature.
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